

Programming walkthroughs: Coding with
Python and Repl.it

Ritza

© 2020 - 2021 Ritza

Contents

Welcome to Code with Repl.it . 1
Part 1: The basics of Repl.it . 1
Part 2: Advanced Repl.it use . 2
Part 3: Building your own projects . 3

Understanding the Repl.it IDE: a practical guide to building your first project with Repl.it 5
Introduction: creating an account and starting a project . 5
Adding more files to your software project . 9
Sharing your application with others . 12
Sharing write-access: Multiplayer . 13
Make it your own . 15
Where next? . 15

Working with Files using Repl.it . 16
Working with files using Python . 16
Creating files using Python . 17
Building a weather logging system using Python and Repl.it 18
Exporting our weather data files . 23
Make it your own . 25
Where next? . 25

Managing dependencies using Repl.it . 26
Understanding Repl.it’s magic import tool and the universal package manager 26
Installing packages through the GUI . 27
Building an NLP project using spaCy . 29
Make it your own . 36
Where next? . 36

Data science with Repl.it: Plots and graphs . 37
Installing Matplotlib and creating a basic line plot . 37
Making a scatter plot of US cities by state . 38
More advanced plotting with seaborn and pandas . 40
Saving plots to PNG files . 42
Make it your own . 43
Where next? . 43

CONTENTS

Multiplayer: Pair programming with Repl.it . 45
Extending our data science article using pair programming: Getting help 45
Make it your own . 52
Where next? . 52

Repl.it and GitHub: Using and contributing to open-source projects 54
Importing a project from GitHub and running it on Repl.it 54
Looking at the version control panel in Repl.it . 57
Forking the project to your own GitHub account . 59
Make it your own . 62
Where next? . 63

Building a game with PyGame and Repl.it . 64
Creating a PyGame repl . 64
Displaying the sprite using PyGame . 66
Making our tennis ball move with each frame . 68
Processing events: Detecting mouse clicks . 70
Making the ball bounce off the edges and move randomly . 70
Adding more balls . 73
Make it your own . 76
Where next? . 76

Staying safe: Keeping your passwords and other secrets secure 77
Understanding .env files . 77
Refactoring our weather project to keep our API key secure 78
Testing that the file is not copied into others’ forks . 79
Using environment variables in our script . 80
Time travelling to find secrets . 81
Rotating credentials . 82
Make it your own . 83
Where next? . 83

An introduction to pytest and doing test-driven development with Repl.it 84
Creating a project structure for pytest . 84
Defining examples for the name split function . 85
Writing the test cases for our names function . 86
Fixing our split_name function . 90
Using our function . 93
Make it your own . 94
Where next . 94

Productivity hacks . 95
Using the global command palette . 95
Using the code editing command palette . 97

CONTENTS

Duplicating entire lines . 98
Deleting entire lines . 99
Inserting blank lines . 100
Indenting and dedenting lines . 101
Adding cursors . 103
Navigating to specific pieces of code . 105
Vim and Emacs key bindings . 107
Make it your own . 108
Where next? . 108

Using the Repl.it database . 109
Adding and reading data using the Repl.it database . 110
Building a basic phonebook application that can read and store data 111
Make it your own . 121
Where next . 121

Repl.it Audio . 122
Understanding how audio works on Repl.it . 122
Getting a free audio file from the Free Music Archive . 123
Downloading audio files to our project . 123
Playing the audio file using Python . 124
Allowing the user to pause, change volume, or get information about the currently

playing track . 125
Playing individual tones . 128
Make it your own . 129
Where next . 130

Beginner web scraping with Python and Repl.it . 131
Overview and requirements . 131
Webpages: beauty and the beast . 132
Downloading a web page with Python . 136
Using BeautifulSoup to extract all URLs . 138
Fetching all of the articles from the homepage . 142
Where next? . 145

Building news word clouds using Python and Repl.it . 146
Overview and requirements . 146
Web scraping . 147
Taking a look at RSS Feeds . 147
Setting up our online environment (Repl.it) . 149
Pulling data from our feed and extracting URLs . 150
Setting up a web application with Flask . 151
Downloading articles and extracting the text . 153
Returning HTML instead of plain text to the user . 154

CONTENTS

Generating word clouds from text in Python . 157
Adding some finishing touches . 160
Where next? . 162

Building a Discord Bot with Python and Repl.it . 163
Overview and requirements . 163
Creating a Repl and installing our Discord dependencies . 167
Setting up authorization for our bot . 167
Keeping our bot alive . 173
Forking and extending our basic bot . 175

Building a Discord bot with Node.js and Repl.it . 177
Overview and requirements . 177
Creating a Repl and installing our Discord dependencies . 181
Setting up authorization for our bot . 182
Keeping our bot alive . 187
Forking and extending our basic bot . 189

Creating and hosting a basic web application with Django and Repl.it 190
Setting up . 191
Creating a static home page . 193
Calling IPIFY from JavaScript . 201
Adding a new route and view, and passing data . 203
Calling a Django route using Ajax and jQuery . 205
Using ip-api.com for geolocation . 207
Getting weather data from OpenWeatherMap . 209

Building a CRM app with NodeJS, Repl.it, and MongoDB . 213
Overview and requirements . 213
Creating a Repl and connecting to our Database . 217
Making a user interface to insert customer data . 218
Updating and deleting database entries . 224
Putting it all together . 230

Introduction to Machine Learning with Python and Repl.it . 231
Overview and requirements . 231
Setting up . 231
Creating some mock data . 232
Understanding vectorization . 233
Understanding classification . 236
Building a manual classifier . 239

Quicksort tutorial: Python implementation with line by line explanation 243
Overview and requirements . 243

CONTENTS

The Partition algorithm . 244
The Quicksort function . 248
Testing our algorithm . 248

Hiding messages in images: steganography with Python and Repl.it 251
A quick background on steganography . 251
Creating the project on Repl.it . 252
Encoding a text message as a binary string . 253
Adding an ‘end of message’ delimeter . 254
Getting pixels from an image . 255
Encoding the image with the message . 256
Decoding messages from image files . 257
Adding a command line wrapper script . 258
Where next? . 260

Build a 2D Platform Game with PyGame and Repl.it . 261
Getting Started . 261
Making the Player Walk . 268
Making the Player Jump . 271
Refining the Game . 277
Where Next? . 282
Next Tutorial . 283

Create a static site generator with Python and Replit . 284
Building a proof of concept . 285
Blog generator . 291
Generic site generator . 298
Where to next? . 305
Next Tutorial . 306

Build a Personal Stock Market Dashboard . 307
Creating the Dashboard . 308
Accessing the Database and Recording Purchases . 311
Flushing the Database . 314
Serving Our Portfolio Data . 315
Fetching Current Prices . 316
Showing Our Portfolio . 319
Caching . 323
Where Next? . 325
Next Tutorial . 325

Building tic-tac-toe with WebSocket and Kaboom.js . 326
How do multiplayer games work? . 326
Creating a new project . 328

CONTENTS

Setting up Socket.IO on the server . 329
Tracking the game state . 330
Accepting connections . 333
Handling new players . 335
Handling player actions . 336
Handling a rematch request . 337
Handling disconnects . 338
Checking for the end of the game . 339
Setting up Kaboom with Socket.IO . 341
Setting Kaboom parameters . 343
Adding the game board . 344
Adding player names and game status . 346
Connecting to the server . 347
Handling updated game state . 348
Handling player moves . 350
Next Steps . 352
Next Tutorial . 352

Build a team technical challenge website with replit.web . 353
Getting started . 354
Creating user roles . 357
Building forms . 361
Building back-end functionality . 365
Building the web application front-end . 373
Building the leaderboard . 380
Using the app . 381
Where next? . 381
Next Tutorial . 381

Build a paid content site with replit.web and Stripe . 382
Getting started . 383
Content upload and other admin functionality . 387
Content viewing and paywalls . 395
Creating the application frontend . 396
Integrating with Stripe . 402
Where next? . 412
Next Tutorial . 412

Build an email news digest app with Nix, Python and Celery 413
Getting started . 413
Installing dependencies . 414
Scraping RSS and Atom feeds . 419
Setting up Mailgun . 422
Interacting with MongoDB . 426

CONTENTS

Creating the web application . 426
Adding user login . 432
Adding and removing subscriptions . 437
Sending digests . 439
Scheduling digests . 442
Where next? . 445

Closing note . 447

Welcome to Code with Repl.it
In a series of tutorials, you’ll go from beginner to expert in coding with Repl.it. While these lessons
are designed to be taken in order, they each make sense on their own too, so feel free to jump in
wherever looks the most interesting to you.

Part 1 covers the basics of using Repl.it: how to create projects, work with files, use third party
dependencies, do plotting and graphing, and use multiplayer to code as part of a team.

Part 2 covers more advanced Repl.it use. You’ll see how to pull projects from GitHub and collaborate
on open source software, build a game, and keep your code secure. You’ll build a full web application
using Test Driven Development (TDD), and find out how to be an elite hacker by using the shortcuts
offered by Repl.it

Once you’ve completed Part 1 and Part 2, you’ll be able to build nearly any project that you want,
and deploy it for the world to use. If you’re stuck for ideas, you can go through the examples given
in Part 3, which consists of practical tutorials to build everything from web scrapers to chat bots.

Note that this set of lessons does not focus on teaching you to code, though we will explain some
key concepts along the way. If you don’t already know how to code, it’s best to take this course in
conjunction with a more traditional course. If you’re not sure what to do next, jump right in and
see if you can keep up. We’re beginner friendly.

Part 1: The basics of Repl.it

In this section of the course, you’ll learn the basic of Repl.it. But that doesn’t mean you won’t build
some fun stuff along the way.

Tutorial 1: Introduction to Repl.it and using the IDE

Learn the basics of the Repl.it IDE. Why use an online IDE and what are all those different panes?
Build a simple program to solve your maths homework.

Tutorial 2: Working with files using Repl.it

Computers were initially created to read and write files, and although we’ve come a long way files
remain central to everything we do. Learn how to create them, read from them, write to them, and
import and export them in bulk.

Welcome to Code with Repl.it 2

Tutorial 3: Managing dependencies with Repl.it

No one is an island, and if you build software you’ll build it on top of existing modules that others
have written. Here we show you how to work with other people’s code in a variety of ways: in many
cases all you need to do is import antigravity and fly away¹.

Tutorial 4: Data science: plotting and graphing

Data is only useful if it can be easily understood. Plots, charts, and graphs are the easiest way to
know what’s happening in the world around you. And did you know that data science is the sexiest
job of the 21st century². Follow along to plot every city in the USA and find out if richer people live
longer.

Tutorial 5: Pair programming and using multiplayer

Did we mention that no one is an island? Coders don’t have to work alone. You can invite your
friends to code along with you, a technique used by beginners and experts alike. Learn how to code
collaboratively, as if you were using a Google Doc.

Part 2: Advanced Repl.it use

Once you know the basics, it’s time to build larger and more complicated projects and keep them
secure.

Tutorial 6: Running projects from GitHub

Most open source software lives on GitHub and it’s easy to take advantage of all of this free software
by pulling code from GitHub to Repl.it and running it with one click. Some software needs to be
configured in specific ways so you’ll also learn how to modify what happens when you press that
big green “run” button.

Tutorial 7: Building a game with PyGame

Do you want to develop games? Of course, you can do that with Repl.it to. We’ll build a 2D juggling
game using PyGame in this lesson and you’ll learn more about graphics programming at the same
time: sprites, physics, and more.

Tutorial 8: Can you keep a secret? What about from time travellers?

Have you been hacked? It’s only a matter of time if you haven’t. Learn how to keep your secrets
safe, even when coding in public spaces. Pro tip: if you accidentally paste a password into your code
and then remove it, others might still find it in your history, so you’ll learn how to navigate that too.

¹https://xkcd.com/353/
²https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century

https://xkcd.com/353/
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://xkcd.com/353/
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century

Welcome to Code with Repl.it 3

Tutorial 9: Introduction to TDD using PyTest

By this stage you’ll have made a few mistakes. Learn the TDD way and how to write code that
tests your other code to catch frustrating errors before they can hurt anyone. Repetitive jobs is what
computers are best at after all.

Tutorial 10: Become an elite hacker with productivity hacks

Have you seen the Matrix? Learn to be the Neo of coding by getting more than one cursor, using
keyboard shortcuts, and all of the other productivity features that Repl.it offers. You’ll be soon
producing more code in less time.

Tutorial 11: Keeping your data in check with the Repl.it database

Now that you are starting to build larger and more complicated applications, it is time to start using
databases to keep your data clean and secure.

Tutorial 12: Repl audio - control (or create) your music with code

Find, download, play, and control the volume of your music, all in code. If that’s not enough, create
your own music too.

This is the part where you realize that the possibilities are endless while you learn how to control
your music with code.

Part 3: Building your own projects

Once you’ve gone through everything, you might think “but what should I build?”. It’s a common
problem and we’ve got you covered. Choose your favourite projects from a list (or turn on the coffee
machine, order some pizza, and get through them all). Once you’ve gone through the step-by-step
guides you can easily modify or extend the projects to make them your own.

Beginner web scraping with Python and Repl.it

Learn more about what web scraping is, how websites are built, and how to automatically scrape
data from websites.

Building news word clouds using Python and Repl.it

Extending the beginner’s web scraping tutorial, you’ll build a more advanced scraper that extracts
the plain text from news articles, stripping away the ‘boilerplate’ content, such as text in sidebars.

Welcome to Code with Repl.it 4

Building a Discord Bot with Python and Repl.it

Build an echo bot using the Discord API. Your bot will always respond with exactly what you send
it, but you can customize it afterwards to do something more useful.

Building a Discord bot with Node.js and Repl.it

ANodeJS version of the Discord bot tutorial above. Even if you prefer Python, it’s good to go through
this one too to get experience with other languages.

Creating and hosting a basic web application with Django and Repl.it

Build a django web application and host it with Repl.it. You’ll use geolocation a weather API to show
the user their local weather forecast.

Building a CRM app with NodeJS, Repl.it, and MongoDB

Another web application, but using NodeJS instead of Django. This is a different application where
you’ll build a basic app to manage customer information.

Introduction to Machine Learning with Python and Repl.it

Build amachine-learning based text classifier.We skip themaths but show how you can usemachine
learning libraries to implement useful solutions without in-depth theoretical knoweldge.

Quicksort tutorial: Python implementation with line by line explanation

Whether you’re applying for jobs or just like algorithms, it’s useful to understand how sorting works.
In real projects, most of the time you’ll just call .sort(), but here you’ll build a sorter from scratch
and understand how it works.

Steganography with Python and Repl.it

Share secret messages with your friends by hiding them inside images with steganography, Python
and Repl.it.

2D platform game with PyGame and Repl.it

Build a fun 2D platform game while learning all about Python game development. It’s is easily
expandible with endless possibilities so let your imagination run wild!

Understanding the Repl.it IDE: a
practical guide to building your first
project with Repl.it
Software developers can get pretty attached to their Integrated Development Environments (IDEs)
and if you look for advice on which one to use, you’ll find no end of people advocating strongly for
one over another: VS Code, Sublime Text, IntelliJ, Atom, Vim, Emacs, and no shortage of others.

In the end, an IDE is just a glorified text editor. It lets you type text into files and save those files,
functionality that has been present in nearly all computers since those controlled by punch cards.

In this lesson, you’ll learn how to use the Repl.it IDE. It has some features you won’t find in many
other IDEs, namely:

• It’s fully online. You can use it from any computer that can connect to the internet and run a
web browser, including a phone or tablet.

• It’ll fully manage your environment for building and running code: you won’t need to mess
around with making sure you have the right version of Python or the correct NodeJS libraries.

• You can deploy any code you build to the public in one click: no messing around with servers,
or copying code around.

In the first part of this guide, we’ll cover the basics and also show you how multiplayer works so
that you can code alone or with friends.

Introduction: creating an account and starting a
project

Although you don’t need an account to use Repl.it (you can just navigate to repl.it³ and press the
“start coding” button), let’s set one up in order to have access to all of the features.

Visit https://repl.it/signup⁴ and follow the prompts to create a user account, either by entering a
username and password or by logging in with Google, GitHub, or Facebook.

Once you’re done, hit the + new repl button in the top right. In the example below, we choose to
create a new Python project. Repl.it will automatically choose a random name for your project, or

³https://repl.it/
⁴https://repl.it/signup

https://repl.it/
https://repl.it/signup
https://repl.it/
https://repl.it/signup

Understanding the Repl.it IDE: a practical guide to building your first project with Repl.it 6

you can pick one yourself. Note that by default your repl will be public to anyone on the internet;
this is great for sharing and collaboration, but we’ll have to be careful to not include passwords or
other sensitive information in any of our projects.

Image 1: Creating a new Python project

You’ll also notice an “Import from GitHub” option. Repl.it allows you to import existing software
projects directly from GitHub, but we’ll create our own for now. Once your project is created, you’ll
be taken to a new view with several panes. Let’s take a look at what these are.

Understanding the Repl.it panes

You’ll soon see how configurable Repl.it is and how most things can be moved around to suit your
fancy. However, by default, you’ll get the following layout.

Understanding the Repl.it IDE: a practical guide to building your first project with Repl.it 7

Image 2: The Repl.it panes

1. Left pane: files and configuration. This, by default, shows all the files that make up your
project. Because we chose a Python project, Repl.it has gone ahead and created a main.py file.

2. Middle pane: code editor. You’ll probably spend most of your time using this pane. It’s a text
editor where you can write code. In the screenshot, we’ve added two lines of Python code,
which we’ll run in a bit.

3. Right pane: output sandbox. This is where you’ll see your code in action. All output that
your program produces will appear in this pane, and it also acts as a quick sandbox to run
small pieces of code, which we’ll look at more later.

4. Run button. If you click the big green run button, your code will be executed and the output
will appear on the right.

5. Menu bar. This lets you control what you see in the main left pane (pane 1). By default, you’ll
see the files that make up your project but you can use this bar to view other things here too
by clicking on the various icons. We’ll take a look at these options later.

Don’t worry too much about all of the functionality offered right away. For now, we have a simple
goal: write some code and run it.

Running code from a file

Usually, you’ll enter your code as text in a file, and run it from there. Let’s do this now. Enter the
following code in the middle pane (pane 2), and hit the run button.

Understanding the Repl.it IDE: a practical guide to building your first project with Repl.it 8

1 print("Hello World")

2 print(1+2)

Image 3: Your first program

Your script will run and the output it generates will appear on the right pane (pane 3). Our code
output the phrase “Hello World” (it’s a long-standing tradition that when you learn something new
the first thing you do is build a ‘hello world’ project), and then output the answer to the sum 1 + 2.

You probably won’t be able to turn this script into the next startup unicorn quite yet, but let’s keep
going.

Running code from Repl.it’s REPL

In computer programming, a REPL is a read-eval-print loop⁵, and a REPL interface is often the
simplest way to run short computer programs (and where Repl.it got its name).

While in the previous example we saved our code to a file and then executed the file, it’s sometimes
quicker to execute code directly.

You can type code in the right-hand pane (pane 3) and press the “Enter” key to run it. Take a look at
the example below where we print “Hello World” again and do a different sum, without changing
our code file.

Image 4: Running code from the REPL

⁵https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop

https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop

Understanding the Repl.it IDE: a practical guide to building your first project with Repl.it 9

This is useful for prototyping or checking how things work, but for any serious program you write
you’ll want to be able to save it, and that means writing the code in a file like in our earlier example.

Adding more files to your software project

If you build larger projects, you’ll want to use more than a single file to stay organised, grouping
related code in different files.

So far, we’ve been using the ‘main.py’ file that was automatically created for us when we started the
project, but we’re not limited to this file. Let’s add a new file, write some code in that, and import it
into the main file for use.

As an example, we’ll write code to solve quadratic equations⁶. If you’ve done this before, you’ll know
it can be tedious without a computer to go through all of the steps.

⁶https://www.mathsisfun.com/algebra/quadratic-equation.html

https://www.mathsisfun.com/algebra/quadratic-equation.html
https://www.mathsisfun.com/algebra/quadratic-equation.html

Understanding the Repl.it IDE: a practical guide to building your first project with Repl.it 10

Image 5: A quadratic equation example

Let’s make Python do the repetitive steps for us by creating a program called “solver”. This could
eventually have a lot of different solvers, but for now we’ll just write one: solve_quadratic.

Add a new file to your project by clicking on the new file button, as shown below. Call the file
solver.py. You now have two files in your project: main.py and solver.py. You can switch between
your files by clicking on them.

Understanding the Repl.it IDE: a practical guide to building your first project with Repl.it 11

Image 6: Adding a new file

Open the solver.py file and add the following code to it.

1 import math

2

3 def solve_quadratic(a, b, c):

4 d = (b ** 2) - 4 * a * c

5 s1 = (-b + math.sqrt(d)) / (2 * a)

6 s2 = (-b - math.sqrt(d)) / (2 * a)

7 return s1, s2

Note that this won’t solve all quadratic equations as it doesn’t handle cases where d, the discriminant,
is 0 or negative. However, it’ll do for now.

Navigate back to the main.py file. Delete all the code we had before and add the following code
instead.

1 from solver import solve_quadratic

2

3 answer = solve_quadratic(5, 6, 1)

4 print(answer)

Note how we use Python’s import functionality to import the code from our new solver script into
the main.py file so that we can run it. Python looks for .py (Python) files automatically, so you omit
the .py suffix when importing code. Here we import the solve_quadratic function (which we just
defined) from the solver.py file.

Run the code and you should see the solution to the equation, as shown below.

Understanding the Repl.it IDE: a practical guide to building your first project with Repl.it 12

Image 7: The solution to the quadratic equation

Congratulations! You’ve written your first useful program.

Sharing your application with others

Coding ismore funwith friends or as part of a team. If youwant to share your codewith others, it’s as
easy as copying the URL and sending it. In this case, the URL is https://repl.it/@GarethDwyer1/demoproject,
but yours will be different based on your Repl.it username and the project name you chose.

You can copy the link and open it in an incognito tab (or a different web browser) to see how others
would experience your project if you were to share it. By default, they’ll be able to see all of your
files and code and run your code, but not make any changes. If someone else tries to make changes
to your repl, it’ll automatically get copied (“forked”) to their account, or an anonymous account if
they haven’t signed up for Repl.it. Any changes your friends make will only happen in their copies,
and won’t affect your code at all.

To understand this, compare the three versions of the same repl below.

• As you see it, with all of the controls
• As your friend would see it, a read-only version
• As your friend would see it after forking it, on an anonymous account

Image 8: The owner’s view of a repl

Understanding the Repl.it IDE: a practical guide to building your first project with Repl.it 13

Image 9: A guest’s ‘read-only’ view of a repl

Image 10: An anonymous owner’s view of a copy of a repl

What does this mean? Because no one else can edit your repl, you can share it far and wide. But
because anyone can read your repl, you should be careful that you don’t share anything private or
secret in it.

Sharing write-access: Multiplayer

Of course, sometimes you might want others to have write access to your repl so that they can
contribute, or help you out with a problem. In these cases, you can use Repl.it’s “multiplayer”
functionality.

If you invite someone to your repl, it’s different from sharing the URL with them. You can invite
someone by clicking Share in the top right and sending them the secret link that starts with
“https://repl.it/join”. This link will give people edit access to your repl.

Understanding the Repl.it IDE: a practical guide to building your first project with Repl.it 14

Image 11: Inviting someone to your repl

If you have a friend handy, send it to them to try it out. If not, you can try out multiplayer anyway
using a separate incognito window again. Below is our main Repl.it account on the left and a second
account which opened the multiplayer invite link on the right. As you can see, all keystrokes can be
seen by all parties in real time.

Understanding the Repl.it IDE: a practical guide to building your first project with Repl.it 15

Image 12: Using multiplayer

Make it your own

If you followed along, you’ll already have your own version of the repl to extend. If not, start from
ours. Fork it from https://repl.it/@GarethDwyer1/cwr-01-quadratic-equations⁷.

Where next?

You can now create basic programs on your own or with friends, and you are familiar with the
most important Repl.it features. There’s a lot more to learn though. In the next nine lessons, you’ll
work through a series of projects that will teach you more about Repl.it features and programming
concepts along the way.

If you get stuck, you can get help from the Repl.it community⁸ or on the Repl.it Discord server⁹.

⁷https://repl.it/@GarethDwyer1/cwr-01-quadratic-equations
⁸https://repl.it/talk/all
⁹https://repl.it/discord

https://repl.it/@GarethDwyer1/cwr-01-quadratic-equations
https://repl.it/talk/all
https://repl.it/discord
https://repl.it/@GarethDwyer1/cwr-01-quadratic-equations
https://repl.it/talk/all
https://repl.it/discord

Working with Files using Repl.it
In this lesson, you’ll gain experience with using and manipulating files using Repl.it. In the previous
lesson you saw how to add new files to a project, but there’s a lot more you can do.

Files can be used for many different things. In programming, you’ll primarily use them to store data
or code. Instead of manually creating files and entering data, you can also use your programs to
create files and automatically write data to these.

Repl.it also offers functionality to mass import or export files from or to the IDE; this is useful in
cases when your program writes data to multiple files and you want to export all of these for use in
another program.

Working with files using Python

Create a new Python repl and call it working-with-files.

Image 1: Creating our files project

As before, you’ll get a default repl project with a main.py file. We need a data file to practise reading
data programmatically.

Working with Files using Repl.it 17

1. Create a new file using the add file button.
2. Call the file mydata.txt. Previously we created a Python file (.py) but in this case we are

creating a plain text file (.txt).
3. Type a line of text into the file.

You should now have something similar to what you see below.

Image 2: Adding data manually to our text file

Go back to the main.py file and add the following code.

1 f = open("mydata.txt")

2 contents = f.read()

3 f.close()

4 print(contents)

This opens the file programmatically, reads the data in the file into a variable called contents, closes
the file, and prints the file contents to our output pane.

Press the Run button. If everything went well, you should see output as shown in the image below.

Image 3: Reading data from a file and printing it out

Creating files using Python

Instead of manually creating files, you can also use Python to do this. Add the following code to
your main.py file.

Working with Files using Repl.it 18

1 f = open("createdfile.txt", "w")

2 f.write("This is some data that our Python script created.\n")

3 f.close()

Note the w argument that we pass into the open function now. This means that we want to open the
file in “write” mode. Be careful: if the file already exists, Python will delete it and create a new one.
There are many different ‘modes’ to work with files in different ways which you can read about in
the Python documentation¹⁰.

Run the code again and you should see a new file pop up in the files pane. If you click on the file,
you’ll find the data that the Python script wrote to it, as shown below.

Image 4: Writing data to a file and viewing it

Building a weather logging system using Python and
Repl.it

Now that you can read from files and write to them, let’s build a mini-project that records historical
weather temperatures. Our program will

• Get the current temperature for a specified set of cities.
• Write this data to file with today’s date.
• Print a summary of this data to the console.

Creating a WeatherStack Account and getting an API key

We’ll get weather data from theWeatherStack API. You’ll need to sign up at weatherstack.com¹¹ and
follow the instructions to get your own access key. Choose the “free tier” option which is limited to
1000 calls per month.

After sign-up, you should see a page similar to the following containing the API access key.

¹⁰https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files
¹¹https://weatherstack.com

https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files
https://weatherstack.com/
https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files
https://weatherstack.com/

Working with Files using Repl.it 19

Image 5: Getting an API key from WeatherStack

You should keep this key secret to stop other people using up all of your monthly calls.

Creating our weather reporting project

You can continue to use the working-with-files project that you created earlier if you want to, but
for the demonstration we’ll create a new Python repl called weather report.

In the main.py file add the following code, but replace the string for API_KEY with your own one.

1 import requests

2

3 # change the following line to use your own API key

4 API_KEY = "baaf201731c0cbc4af2c519cb578f907"

5 WS_URL = "http://api.weatherstack.com/current"

6

7 city = "London"

8

9 parameters = {'access_key': API_KEY, 'query': city}

10

11 response = requests.get(WS_URL, parameters)

12 js = response.json()

13 print(js)

14 print()

Working with Files using Repl.it 20

This code asks WeatherStack for the current temperature in London, gets the JSON¹² version of this
and prints it out. You should see something similar to what is shown below.

Image 6: Getting the current weather in JSON format

WeatherStack returns a lot of data, but we are mainly interested in

1. The location: To see if we found the correct London and not one of the 29 other places¹³ called
London.

2. The date:We’ll record this when we save this data to a file.
3. The current temperature: This is specified by default in Celsius, but can be customised¹⁴ if

you prefer Fahrenheit.

Add the following code below the existing code to extract these values into a format that’s easier to
read.

1 temperature = js['current']['temperature']

2 date = js['location']['localtime']

3 city = js['location']['name']

4 country = js['location']['country']

5

6 print(f"The temperature in {city}, {country} on {date} is {temperature} degrees Cels\

7 ius")

If you run the code again, you’ll see a more human-friendly output, as shown below.

¹²https://www.w3schools.com/js/js_json_intro.asp
¹³https://www.wanderlust.co.uk/content/londons-around-the-world/
¹⁴https://weatherstack.com/documentation

https://www.w3schools.com/js/js_json_intro.asp
https://www.wanderlust.co.uk/content/londons-around-the-world/
https://weatherstack.com/documentation
https://www.w3schools.com/js/js_json_intro.asp
https://www.wanderlust.co.uk/content/londons-around-the-world/
https://weatherstack.com/documentation

Working with Files using Repl.it 21

Image 7: Seeing a human-readable summary of the data

This is great for getting the current weather, but now we want to extend it a bit to record weather
historically.

We’ll create a file called cities.txt containing the list of cities we want to get weather data for. Our
script will request the weather for each city, and save a new line with the weather and timestamp.

Add the cities.txt file, as in the image below (of course, you can change which cities you would
like to get weather info for).

Image 8: Creating the cities.txt file

Now remove the code we currently have in main.py and replace it with the following.

1 import requests

2

3 API_KEY = "baaf201731c0cbc4af2c519cb578f907"

4 WS_URL = "http://api.weatherstack.com/current"

5

6 cities = []

7 with open("cities.txt") as f:

8 for line in f:

9 cities.append(line.strip())

10 print(cities)

Working with Files using Repl.it 22

11

12 for city in cities:

13 parameters = {'access_key': API_KEY, 'query': city}

14 response = requests.get(WS_URL, parameters)

15 js = response.json()

16

17 temperature = js['current']['temperature']

18 date = js['location']['localtime']

19

20 with open(f"{city}.txt", "w") as f:

21 f.write(f"{date},{temperature}\n")

This is similar to the code we had before, but now we

• Read the city names from our cities.txt file and put each city into a Python list.
• Loop through the cities and get the weather data for each one.
• Create a new file with the same name as each city and write the date and temperature
(separated by a comma) to each file.

In our previous examples we explicitly closed files using f.close(). In this example, we instead
open our files in a with block. This is a common idiom in Python and is usually how you will open
files. You can read more about this in the files section of the Python docs¹⁵.

If you run this code, you’ll see it creates one file for each city.

Image 9: The script creates one file for each city

If you open up one of the files, you’ll see it contains the date and temperature that we fetched from
WeatherStack.

¹⁵https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files

https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files
https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files

Working with Files using Repl.it 23

Image 10: Example data recorded for London

If you run the script multiple times, each file will still only contain one line of data: that from the
most recent run. This is because when we open a file with in “write” mode ("w"), it overwrites it
with the new data. Because we want to create historical weather logs, we need to change the second
last line to use “append” mode instead ("a").

Change

1 with open(f"{city}.txt", "w") as f:

to

1 with open(f"{city}.txt", "a") as f:

and run the script again. If you open one of the city files again, you’ll see it has a new line instead
of the old data being overwritten. Newer data is appended to the end of the file. WeatherStack only
updates its data every 5 minutes or so, so you might see exact duplicate lines if you run the script
multiple times in quick succession.

Image 11: Adding new data to the end of each file

Exporting our weather data files

If you run this script every day for a few months, you’ll have a nice data set that could be useful in
other contexts too. If you want to download all of the data from Repl.it, you can use the Download
as zip functionality to export all of the files in a repl (including the code and data files).

Working with Files using Repl.it 24

Image 12: Downloading all of our files from Repl.it

Once you’ve downloaded the .zip file you can extract it in your local file system and find all of the
data files which can now be opened with other programs as required.

Image 13: The created data files on our local file system

From the same menu, you can also choose upload file or upload folder to import files into your
repl. For example, if you cleaned the files using external software and then wanted your repl to start
appending new data to the cleaned versions, you could re-import them.

Repl.it will warn you about overwriting your existing files if you haven’t changed the names.

Working with Files using Repl.it 25

Image 14: Be careful about overwriting your precious data

Make it your own

If you followed along, you’ll already have your own version of the repl to extend. If not, start from
ours. Fork it from https://repl.it/@GarethDwyer1/cwr-02-weather-report¹⁶.

Where next?

That’s it for our weather reporting project. You learned how to work with files in Python and Repl.it,
including different modes (read, write, or append) in which files can be opened.

You also worked with an external library, requests, for fetching data over the internet. This module
is not actually part of Python, and in the next article you’ll learn more about how to manage external
modules or dependencies.

¹⁶https://repl.it/@GarethDwyer1/cwr-02-weather-report

https://repl.it/@GarethDwyer1/cwr-02-weather-report
https://repl.it/@GarethDwyer1/cwr-02-weather-report

Managing dependencies using Repl.it
Nearly all useful programs rely to some extent on pre-existing code in various forms. The existing
code that your code relies on is known as a dependency. You have already come across some
dependencies in previous tutorials: you used the math module to calculate quadratic equations in
the first tutorial and you used the requests module to fetch weather data in the second tutorial.

In the first tutorial, you also wrote the solver.py module, and imported this into the main.py file.

We can think of dependencies as falling into three broad categories:

• Internal dependencies: other code that you or your organisation wrote and which you fully
control, e.g. the solver.py file.

• Standard dependencies: code that exists as part of the standard language libraries, e.g. the math
module.

• External dependencies: code that is written by third-party developers, e.g. the requests

module.

In this tutorial, you’ll gain more experience with all three categories of dependencies. Specifically,
you’ll write an NLP (natural language processing) program to analyse sentences, using spaCy¹⁷, a
third-party dependency.

Dependency management is a hugely complicated area, and there is a large ecosystem of related
tools to help manage packaging and installing Python programs. We won’t be covering all of the
options and background, but you can read an overview of the different tools here¹⁸.

Understanding Repl.it’s magic import tool and the
universal package manager

In nearly all programming environments, you have to explicitly install third-party dependencies.
Let’s say you wanted to use the requests library (which is not included in Python by default) on
your local machine. If you try to import it, you would get a ModuleNotFound error, as shown below.

Image 1: Trying to use a dependency without installing it

¹⁷https://spacy.io/
¹⁸https://modelpredict.com/python-dependency-management-tools

https://spacy.io/
https://modelpredict.com/python-dependency-management-tools
https://spacy.io/
https://modelpredict.com/python-dependency-management-tools

Managing dependencies using Repl.it 27

In order to use this library, you would first have to install it using a command similar to pip install

requests, and only then would the import statement run correctly.

Repl.it, by contrast, can often do the installation for you completely automatically, using the
Universal Package Manager¹⁹. The moment you run the import requests line of code, the package
manager will go find the correct package and install it, or in some cases Repl.it will even have pre-
installed the package. Either way, your code will “just work”.

Image 2: Seamless external package use on a new repl

This is super convenient, but sometimes you need more control. For example, you might need a
specific version of a package, or the universal package manager might not be able to automatically
install all of your dependencies. In these cases, you can use more advanced ways to install packages.

Installing packages through the GUI

If you’re not sure exactly which package you need, you can use Repl.it’s built-in package man-
ager GUI to search for packages. In the example below, we are looking for a package called
beautifulsoup4.

To use this, you need to

1. Click on the packages tab from the left toolbar.
2. Search for a package by typing in part or all of its name.
3. Select the package you want from the search results.

¹⁹https://blog.repl.it/upm

https://blog.repl.it/upm
https://blog.repl.it/upm

Managing dependencies using Repl.it 28

Image 3: Using the GUI package manager to find a package

This will take you to a page showing an overview and summary of the selected package. You can
install it to your repl by using the + button, as shown below.

Image 4: Installing a package from the overview page

Once the package is installed, we can use it in our code. Run the example shown below to extract
the “Google Search” text from the main button on the homepage.

1 import requests

2 from bs4 import BeautifulSoup

3

4 r = requests.get("https://google.com").text

5 soup = BeautifulSoup(r, "html.parser")

6

7 print([x.get("title") for x in soup.findAll("input") if x.get("title")])

This code uses the requests library to scrape the HTML from google.com and then uses the
beautifulsoup4 library to get the title of the button off the page and print it to the console.

Managing dependencies using Repl.it 29

Because requests is one of the most commonly used Python libraries, Repl.it probably installed it
in a slightly different way from most packages. However, beautifulsoup4 is less common and this
will have been installed in the standard way using poetry²⁰.

If you go back to the files tab, you’ll see two new files poetry.lock and pyproject.tomlwhich were
created automatically by the installer. Take a look inside the pyproject.toml file.

Image 5: The pyproject.toml file lists all dependencies and their versions.

In this case, line 9 says that our project relies on the beautifulsoup4 package and needs at least
version 4.9.1. If we look at the beautifulsoup page on PyPi²¹, we’ll see that the latest stable version
is 4.9.1, so if this project is run in the future and there is a new version available, it will automatically
use the updated package.

Building an NLP project using spaCy

So far, we have installed packages that are easy for the Repl.it universal dependency manager to
install automatically, behind the scenes. Some packages are more complicated though. spaCy²², for
example, is an NLP library that relies on a large external data file. When installing this library, you
usually have to install this data file as a separate step.

Installing the spaCy language model

To get this to work on Repl.it, we’ll have to manually modify the pyproject.toml file.

Create a new repl, SpacyExample, then click on the Packages icon and search for “spacy”.

²⁰https://python-poetry.org/docs/basic-usage/
²¹https://pypi.org/project/beautifulsoup4/
²²https://spacy.io/

https://python-poetry.org/docs/basic-usage/
https://pypi.org/project/beautifulsoup4/
https://spacy.io/
https://python-poetry.org/docs/basic-usage/
https://pypi.org/project/beautifulsoup4/
https://spacy.io/

Managing dependencies using Repl.it 30

Image 6:We can access the spaCy package via the package index”

Select the version at the top and hit the + button to add this package to your application. Once this
is complete, head across to your main.py and enter the following code:

1 import spacy

2 print(spacy.__version__)

This should output the version of spaCy that we are using, which means that spaCy has been added
as a dependency correctly.

If you take a look at your pyproject.toml file now, you should see that it has specified spaCy as a
dependency.

1 [tool.poetry]

2 name = "spacy-example"

3 version = "0.1.0"

4 description = ""

5 authors = ["Your Name <you@example.com>"]

6

7 [tool.poetry.dependencies]

8 python = "^3.8"

9 spacy = "^2.3.2"

10

11 [tool.poetry.dev-dependencies]

Managing dependencies using Repl.it 31

12

13 [build-system]

14 requires = ["poetry>=0.12"]

15 build-backend = "poetry.masonry.api"

An important component of spaCy is a set of pretrained statistical models that support NLP. These
do not come with spaCy by default, nor are they indexed on PyPi. One of these models is en_core_-
web_sm.

In your main.py file, replace your current code with the following:

1 import spacy

2

3 nlp = spacy.load("en_core_web_sm")

4 doc = nlp("The quick brown fox jumps over the lazy dog.")

5 for token in doc:

6 print(token.text)

This code should simply break our short sentence into tokens (words), and print each one out.

However, at this point, if you run your code you will get an error, as Python cannot find the en_-

core_web_sm model:

1 OSError: [E050] Can't find model 'en_core_web_sm'. It doesn't seem to be a shortcut \

2 link,

3 a Python package or a valid path to a data directory.

We will now explicitly tell our application how to access this dependency. To do this, we need to
find where the model is stored online.

First, we need to find the spaCy documentation for this model. This can be accessed here²³.

²³https://spacy.io/models/en

https://spacy.io/models/en
https://spacy.io/models/en

Managing dependencies using Repl.it 32

Image 7: The spaCy documentation gives us information about the model

Selecting the RELEASE DETAILS button will guide us to where the model is stored online, on GitHub²⁴.
GitHub is a very common place to store code and related components online.

Image 8: This is the en_core_web_sm GitHub page

The GitHub page also lets us know what version of spaCy is needed to make sure the model runs
correctly.

²⁴https://github.com/explosion/spacy-models/releases//tag/en_core_web_sm-2.3.1

https://github.com/explosion/spacy-models/releases//tag/en_core_web_sm-2.3.1
https://github.com/explosion/spacy-models/releases//tag/en_core_web_sm-2.3.1

Managing dependencies using Repl.it 33

Image 9: The GitHub page provides information about the requirements and features of the model

Here we see that spaCy version should be greater than or equal to 2.3.0, but less than 2.4.0. We should
make a note of this for later, so we can check that we have pinned an appropriate spaCy version.

If we scroll right to the bottom of the page, you will see an “Assets” section, and under this you will
see the same Package icon we used in Repl.it with “en_core_web_sm-2.3.1.tar.gz” next to it. This is
what we have been looking for: the file containing the model.

Image 10: The model can be found under the “Assets” heading

Right-click on this file and select copy link address. We will need this shortly, as this is the URL
of the file.

We now need to modify our pyproject.toml file in Repl.it. Open this file and add the following
section to it

Managing dependencies using Repl.it 34

1 [tool.poetry.dependencies.en_core_web_sm]

2 url = "https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.\

3 3.1/en_core_web_sm-2.3.1.tar.gz"

The url should be the one that you copied from GitHub in the previous step. Your whole
pyproject.toml file should now look like the one below.

Image 11:Modifying pyproject.toml to explicitly point to the model allows our application to find it and use it

At this point that we should also check that we are using an appropriate version of spaCy. We are
using version 2.3.2, which is in the allowed range for the model release (>=2.3.0, <2.4.0) , so we do
not need to modify this.

Finally, hit the run button. This will cause your configuration files to be updated and then will run
your application. If everything has gone correctly, you should see the following in the output pane
once it completes.

Image 12: spaCy and the necessary components are all found as dependencies, so the application runs successfully

Managing dependencies using Repl.it 35

Extracting names from headlines using spaCy

We’ve now seen how to install common packages like requests simply by importing them, how
to find and install slightly more complicated packages like beautifulsoup using the GUI package
manager, and how to manually install even more complicated packages like spaCy (which have their
own dependencies) by manually writing sections of the pyproject.toml file.

Let’s put everything together and use all three packages to extract people’s names from today’s
headlines. We’ll use the plaintext version of CNN at lite.cnn.com²⁵ as it’s easier to extract text from.

Replace the code in your main.py with the following.

1 import spacy

2 import requests

3 from bs4 import BeautifulSoup

4 from collections import Counter

5

6 nlp = spacy.load("en_core_web_sm")

7 response = requests.get("http://lite.cnn.com/en")

8 soup = BeautifulSoup(response.text, "html.parser")

9

10 # https://stackoverflow.com/questions/1936466/beautifulsoup-grab-visible-webpage-text

11 [s.extract() for s in soup(['style', 'script', '[document]', 'head', 'title'])]

12 text = soup.getText()

13 doc = nlp(text)

14

15 names = []

16 for ent in doc.ents:

17 if ent.label_ == "PERSON":

18 names.append(ent.lemma_)

19

20 print("These people are in the headlines today")

21 print(Counter(names).most_common(10))

This pulls the HTML from the lite version of CNN, extracts the HTML, removes non-visible text
such as CSS styles and JavaScript, and parses the resulting text using spaCy.

Then we loop through all of the named entities²⁶ that spaCy detects as part of its standard parse, and
print out any that look like people.

If you run this code, you should see a list of people making headlines today. At the time of writing,
John Lewis is mentioned in the most headlines. (Note that named entity recognition is a difficult

²⁵https://lite.cnn.com
²⁶https://en.wikipedia.org/wiki/Named_entity

https://lite.cnn.com/
https://en.wikipedia.org/wiki/Named_entity
https://lite.cnn.com/
https://en.wikipedia.org/wiki/Named_entity

Managing dependencies using Repl.it 36

task and here spaCy considers the possessive form John Lewis' to be a separate entity. We can see
that John Lewis was mentioned a total of 7 times though.)

Image 13: Using spaCy to extract people in today’s news.

Make it your own

If you followed along, you’ll already have your own version of the repl to extend. If not, start from
ours. Fork it from https://repl.it/@GarethDwyer1/cwr-03-nlp-spacy²⁷.

Where next?

spaCy is a very powerful NLP library and it can do far more than simply extract people’s names. See
what other interesting insights you can automatically extract from today’s news.

Now you can use the Repl.it IDE, write programs that use files, and install third-party dependencies.
Next up, we’ll be taking a look at doing data sciencewith Repl.it by visualising data using matplotlib
and seaborn.

²⁷https://repl.it/@GarethDwyer1/cwr-03-nlp-spacy

https://repl.it/@GarethDwyer1/cwr-03-nlp-spacy
https://repl.it/@GarethDwyer1/cwr-03-nlp-spacy

Data science with Repl.it: Plots and
graphs
So far, all the programs we have looked at have been entirely text based. They have taken text input
and produced text output, on the console or saved to files.

While text is flexible and powerful, sometimes a picture is worth a thousand words. Especially
when analysing data, you’ll often want to produce plots and graphs. There are three main ways of
achieving this using Repl.it.

1. Creating a front-end only project and using only JavaScript, HTML and CSS.
2. Creating a full web application with something like Flask²⁸, analysing the data in Python and

passing the results to a front end to be visualised.
3. Using Python code only, creating windows using X²⁹ and rendering the plots in there.

Option 1 is great if you’re OK with your users having access to all of your data, you like doing data
manipulation in JavaScript, and your data set is small enough to load into a web browser. Option 2
is often the most powerful, but can be overkill if you just want a few basic plots.

Here, we’ll demonstrate how to do option 3, using Python and Matplotlib³⁰.

Installing Matplotlib and creating a basic line plot

Matplotlib is a third-party library for doing all kinds of plots and graphs in Python. We can install
it by using Repl.it’s “magic import” functionality. Matplotlib is a large and powerful library with a
lot of functionality, but we only need pyplot for now: the module for plotting.

Create a new Python repl and add the following code.

1 from matplotlib import pyplot as plt

2

3 plt.plot([1,2,3,4,5,6], [6,3,6,1,2,3])

4 plt.show()

²⁸https://flask.palletsprojects.com/
²⁹https://en.wikipedia.org/wiki/X_Window_System
³⁰https://matplotlib.org/

https://flask.palletsprojects.com/
https://en.wikipedia.org/wiki/X_Window_System
https://matplotlib.org/
https://flask.palletsprojects.com/
https://en.wikipedia.org/wiki/X_Window_System
https://matplotlib.org/

Data science with Repl.it: Plots and graphs 38

There are many traditions in the Python data science world about how to import libraries. Many of
the libraries have long names and get imported as easier-to-type shortcuts. You’ll see that nearly all
examples import pyplot as the shorter plt before using it, as we do above. We can then generate
a basic line plot by passing two arrays to plt.plot() for X and Y values. In this example, the first
point that we plot is (1,6) (the first value from each array). We then add all of the plotted points
joined into a line graph.

Repl.it knows that it needs an X server to display this plot (triggered when you call plt.show()),
so after running this code you’ll see “Starting X” in the main output console and a new graphical
window will appear.

Image 1:We can plot a basic line plot by passing in the X and Y values

The X server is very limited compared to a full operating system GUI. Beneath the plot, you’ll see
some controls to pan and zoom around the image, but if you try to use them you’ll see that the
experience is not that smooth.

Line plots are cool, but we can do more. Let’s plot a real data set.

Making a scatter plot of US cities by state

Scatter plots are often used to plot 2D data and look for correlations and other patterns. However,
they can also loosely be used to plot geographical X-Y coordinates (in reality, the field of
plotting geographical points is far more complicated³¹). We’ll use a subset from the city data from
simplemaps³² to generate our next plot. Each row of the data set represents on city in the USA, and
gives us its latitude, longitude, and two-letter state code.

To download the data and plot it, replace the code in your main.py file with the following.

³¹https://www.gislounge.com/what-is-gis/
³²https://simplemaps.com/data/us-cities

https://www.gislounge.com/what-is-gis/
https://simplemaps.com/data/us-cities
https://simplemaps.com/data/us-cities
https://www.gislounge.com/what-is-gis/
https://simplemaps.com/data/us-cities

Data science with Repl.it: Plots and graphs 39

1 from matplotlib import pyplot as plt

2 import requests

3 import random

4

5 data_url = "https://raw.githubusercontent.com/sixhobbits/ritza/master/data/us-cities\

6 .txt"

7

8 r = requests.get(data_url)

9

10 with open("us-cities.txt", "w") as f:

11 f.write(r.text)

12

13 lats = []

14 lons = []

15 colors = []

16 state_colors = {}

17

18 # matplotlib uses single letter shortcuts for common colors

19 # blue, green, red, cyan, magenta, yellow, black

20 all_colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k']

21

22 with open("us-cities.txt") as f:

23 for i, line in enumerate(f):

24 state, lat, lon = line.split()

25 lats.append(float(lat))

26 lons.append(float(lon))

27

28 # we assign each state a random colour, but once we've picked

29 # a colour we always use it for all cities in that state.

30 if state not in state_colors:

31 state_colors[state] = random.choice(all_colors)

32 colors.append(state_colors[state])

33 plt.scatter(lons, lats, c=colors)

34 plt.show()

If you run this, you’ll notice it takes a little bit longer than the six point plot we created before, as it
now has to plot nearly 30 000 data points. Once it’s done, you should see something similar to the
following (though, as the colours were chosen randomly, yours might look different).

Data science with Repl.it: Plots and graphs 40

Image 2: All the cities in the US plotted by state as a scatterplot

You’ll also notice that while it’s recognisable as the US, the proportions are not right. Mapping a 3D
sphere to a 2D plane is surprisingly difficult and there are many different ways of doing it.

More advanced plotting with seaborn and pandas

Plotting X-Y points is a good start, but in most cases you’ll want to do a little bit more. seaborn³³ is a
plotting library built on top of Matplotlib that makes it easier to create good-looking visualisations.

Let’s do another scatter plot based on GDP and life expectancy data to see if people live longer in
richer countries.

Replace the code in main.py with the following. Remember how we mentioned earlier that data
scientists have traditions about how to import certain libraries? Here you see a few more of these
“short names”. We’ll use seaborn for plotting but import it as sns, pandas³⁴ for reading the CSV file
but import it as pd and NumPy³⁵ for calculating the correlation but import it as np.

³³https://seaborn.pydata.org/
³⁴https://pandas.pydata.org/
³⁵https://numpy.org/

https://seaborn.pydata.org/
https://pandas.pydata.org/
https://numpy.org/
https://seaborn.pydata.org/
https://pandas.pydata.org/
https://numpy.org/

Data science with Repl.it: Plots and graphs 41

1 import requests

2 import seaborn as sns

3 import pandas as pd

4 from matplotlib import pyplot as plt

5 import numpy as np

6

7 data_url = "https://raw.githubusercontent.com/holtzy/data_to_viz/master/Example_data\

8 set/4_ThreeNum.csv"

9

10 r = requests.get(data_url)

11

12 with open("gdp-life.txt", "w") as f:

13 f.write(r.text)

14

15 df = pd.read_csv("gdp-life.txt")

16 print(df.head())

17

18 print("___")

19 print("The correlation is: ", np.corrcoef(df["gdpPercap"], df["lifeExp"])[0, 1])

20 print("___")

21

22 sns.lmplot("gdpPercap", "lifeExp", df).set_axis_labels(

23 "Life expectancy", "GDP per capita"

24)

25

26 plt.title("People live longer in richer countries")

27 plt.tight_layout()

28 plt.show()

If you run this, you’ll see it plots each country in a similar way to our previous scatter plot, but also
adds a line showing the correlation.

In the output pane below you can also see that the correlation coefficient between the two variables
is 0.67 which is a fairly strong positive correlation.

Data science with Repl.it: Plots and graphs 42

Image 3: Using seaborn to create a scatter plot with a best fit line to see correlation

Data science and data visualisation are huge topics, and there are dozens of Python libraries that
can be used to plot data. For a good overview of all of them and their strengths and weaknesses, you
should watch Jake Vanderplas’s talk³⁶.

Saving plots to PNG files

While visualising data right after you analyse it is often useful, sometimes you need to save the
figures to embed into reports. You can save your graphs by calling plt.savefig(). Change the last
line (plt.show()) to

1 plt.savefig("GDPlife.png")

Rerun the code. Instead of seeing the plot appear in the right-hand pane, you’ll see a new file in the
files pane. Clicking on it will show you the PNG file in the editing pane.

³⁶https://www.youtube.com/watch?v=FytuB8nFHPQ

https://www.youtube.com/watch?v=FytuB8nFHPQ
https://www.youtube.com/watch?v=FytuB8nFHPQ

Data science with Repl.it: Plots and graphs 43

Image 4: Saving a PNG file for later use

Make it your own

If you followed along, you’ll already have your own version of the repl to extend. If not, start from
ours. Fork it https://repl.it/@GarethDwyer1/cwr-04-matplotlib-plotting³⁷.

Where next?

You’ve learned how to make some basic plots using Python and Repl.it. There are millions of freely
available data sets on the internet, waiting for people to explore them. You can find many of these

³⁷https://repl.it/@GarethDwyer1/cwr-04-matplotlib-plotting

https://repl.it/@GarethDwyer1/cwr-04-matplotlib-plotting
https://repl.it/@GarethDwyer1/cwr-04-matplotlib-plotting

Data science with Repl.it: Plots and graphs 44

using Google’s Dataset Search³⁸ service. Pick a topic that you’re interested in and try to find out
more about it through data visualisations.

Next up, we’ll explore the mutiplayer functionality of Repl.it in more detail so that you can code
collaboratively with friends or colleagues.

³⁸https://datasetsearch.research.google.com/

https://datasetsearch.research.google.com/
https://datasetsearch.research.google.com/

Multiplayer: Pair programming with
Repl.it
Software developers have a reputation for being loners, but they don’t always code by themselves.
Pair programming³⁹ is used by many programmers to

• Write bug-free code more efficiently (for example, one person might watch for mistakes while
the other codes).

• Share knowledge (a less-experienced programmer might ‘follow along’ while a more experi-
enced programmer develops something, learning from each step of the process).

• Assess expertise (if you’re considering a new hire, watching them code first can be helpful to
assess how good a coder they are, but coding with them allows you to also see their experience
in teamwork and communication).

Pair programming intuitively sounds like it would be inefficient: after all, the two developers could
instead be working on different projects simultaneously. But on top of catching more bugs, two
people working together often display more creativity as well. You might think of an idea based on
something your buddy said that wouldn’t have come to you alone.

If you have a friend handy, work through this tutorial together to gain real pair programming
experience. If you’re alone, fire up two browsers (or use incognito mode) to sign into two Repl.it
accounts simultaneously.

Extending our data science article using pair
programming: Getting help

Imagine that you are a developer who has come across the previous tutorial on plotting and
graphing⁴⁰. You want to adapt the graphs shown a bit, but you haven’t used Python much, so you
decide to ask your friend for help.

In this scenario, you are “@Lean3Viljoen94” and the friend that you’re asking for help is “@GarethD-
wyer1”.

Start by forking the data science repl⁴¹ and making sure that you can run it.

³⁹https://en.wikipedia.org/wiki/Pair_programming
⁴⁰http://www.codewithrepl.it/04-data-science-and-visualisation-with-repl-it.html
⁴¹https://repl.it/@GarethDwyer1/04-data-science-and-visualisation-with-replit

https://en.wikipedia.org/wiki/Pair_programming
http://www.codewithrepl.it/04-data-science-and-visualisation-with-repl-it.html
http://www.codewithrepl.it/04-data-science-and-visualisation-with-repl-it.html
https://repl.it/@GarethDwyer1/04-data-science-and-visualisation-with-replit
https://en.wikipedia.org/wiki/Pair_programming
http://www.codewithrepl.it/04-data-science-and-visualisation-with-repl-it.html
https://repl.it/@GarethDwyer1/04-data-science-and-visualisation-with-replit

Multiplayer: Pair programming with Repl.it 46

Image 1: Forking another user’s project

Now from your own fork, press the share button, as shown below.

Image 2: Sharing your project with another user

Copy the invite link, and note that this is different from the normal link to your repl. If you copy
the link from your URL bar, you can give people read access to your repl, but by copying the invite

Multiplayer: Pair programming with Repl.it 47

link you’ll give them write access.

Image 3: Sharing options modal

If you knew your friend’s Repl.it username or the email associated with the Repl.it account, you
could instead use the Invite box at the top. Share the link with your friend and wait for them to
join.

As soon as they do, you will see that a chat box pops up in the bottom right corner. Their profile
picture or letter will be at the top of the chat box, so you can always know who is currently active.

Remember, you forked the repl in a previous step, so you are the owner of this fork and the “host” of
this multiplayer session. If you invite multiple people and then leave, they can continue collaborating
without you, but they won’t be able to rejoin if the host is no longer in the session.

You can use the team chat feature, as shown below.

Multiplayer: Pair programming with Repl.it 48

Image 4: Starting chat with another user

In the previous tutorial, we looked at GDP by country. Imagine that you are now interested in how
this is broken down by continent too. You still want to plot each country as a separate data point,
but you want them in different colours, one for each continent. You’re not sure how to do this, so
you ask for help.

You can see a typing indicator to help decide if you should wait around for a reply or go make coffee.

Multiplayer: Pair programming with Repl.it 49

Image 5: Chat box showing that user is typing

Your friend tells you about the hue argument and points out that you already have this data in the
continent column in your data frame. You add hue="continent" to the graph and re-run it, but it
doesn’t quite work out how you expect.

Multiplayer: Pair programming with Repl.it 50

Image 6: Changing the plot from grouping data by country to grouping by continent

Your friend suggests maybe a scatter plot without the correlation line might look better, but when
you try that it results in an error. The error message is hidden by the chat box, so you move it to the
other side of the screen.

Multiplayer: Pair programming with Repl.it 51

Image 7: You can move the chat box to the left of the IDE to see errors better

This is getting a bit more complicated than you bargained for. Sometimes showing is easier than
telling, so your friend starts editing the code directly instead of telling you how to do so using chat.
The code

1 sns.scatterplot(

2 "gdpPercap", "lifeExp", df, hue="continent"

3).set_axis_labels("GDP per capita", "Life expectancy")

changes to

1 ax = sns.scatterplot(`

2 "gdpPercap", "lifeExp", df, hue="continent"

3)

4 ax.set(xlabel="GDP per capita", ylabel="Life expectancy")

Multiplayer: Pair programming with Repl.it 52

Image 8: In our new plot, we can see that African countries tend to have low life expectency and low GDP, but the
correlation looks weaker for the other continents

Make it your own

If you followed along, you’ll already have your own version of the repl to extend. If not, start from
ours. Fork it from https://repl.it/@GarethDwyer1/cwr-05-multiplayer⁴².

Where next?

Getting help on a single file in a program is only one use for multiplayer, but there are many
scenarios where it can be useful to see your teammates’ changes in real time. For example, if you’re a
back-end developer you could work closely with a front-end developer, ironing out any issues with
data communication between the back- and front-end in real time, instead of waiting for multiple
iterations of several days.

⁴²https://repl.it/@GarethDwyer1/cwr-05-multiplayer

https://repl.it/@GarethDwyer1/cwr-05-multiplayer
https://repl.it/@GarethDwyer1/cwr-05-multiplayer

Multiplayer: Pair programming with Repl.it 53

That brings us to the end of part 1 of this series and you should now be familiar with all of the basic
features of Repl.it.

In part 2, we’ll cover more advanced features, such as running projects from GitHub, storing secrets
securely, and productivity hacks.

Repl.it and GitHub: Using and
contributing to open-source projects
You’ve probably heard of GitHub⁴³, which hosts millions of coding projects that you can use or learn
from.

In this tutorial, we’ll see how to:

• Import open-source projects from GitHub to Repl.it so that we can run them or modify them
• Integrate your own GitHub account with your Repl.it account so that you can work on your
private projects

• Push changes back to open-source projects as pull requests.

We’ll use a basic Flask hello world app for the demonstrations. You can use this same project to
follow along, or pick any other project on GitHub that interests you.

Importing a project from GitHub and running it on
Repl.it

We’ll use the Flask⁴⁴ application available at https://github.com/ritza-co/flask-hello-world⁴⁵ for
demonstration purposes. To import it into Repl.it, press the + new repl button, switch to the “Import
From GitHub” tab, and paste in the GitHub URL, as shown below.

⁴³https://github.com
⁴⁴https://flask.palletsprojects.com/en/1.1.x/
⁴⁵https://github.com/ritza-co/flask-hello-world

https://github.com/
https://flask.palletsprojects.com/en/1.1.x/
https://github.com/ritza-co/flask-hello-world
https://github.com/
https://flask.palletsprojects.com/en/1.1.x/
https://github.com/ritza-co/flask-hello-world

Repl.it and GitHub: Using and contributing to open-source projects 55

Image 1: Importing a repository from GitHub to Repl.it.

Press the green Import from GitHub button and you’ll see Repl.it clone the repository and turn it into
a repl. In all of our previous projects, we used the main.py file that Repl.it automatically creates for
all new Python projects, and which it runs automatically when you press the run button. Note how
in this GitHub project, we have no main.py file, and our code is instead in mydemoapp.py. Therefore,
Repl.it will need some help from you to define how to run the project. This is configured through
another special file named .replit. Because there was no main.py file, Repl.it automatically created
this file and will prompt you to configure it.

Repl.it and GitHub: Using and contributing to open-source projects 56

Image 2: Adding a .replit file to indicate how the project should be run.

Select the language (Python) from the first dropdown and type python mydemoapp.py in the
“configure the run button” input. Every time you press the run button, Repl.it will execute the
command given here. If you prefer, you can also edit the .replit file directly. If you click on it,
you’ll see it now contains the following configuration, which matches what we provided through
the GUI panel.

1 language = "python3"

2 run = "python mydemoapp.py"

If you hit the run button, you should see the app start. As you can see, the web application is
very basic: all it can do is display a welcome message. If the configuration panel doesn’t pop up
automatically, you can manually create a file called .replit and add the configuration above to get
the same result.

Repl.it and GitHub: Using and contributing to open-source projects 57

Image 3: Running the Flask application on Repl.it.

Some GitHub projects are very large and complicated, and you might not be able to run everything
you need directly on Repl.it, but in many cases it just works. Open-source projects can be read and
run by anyone, but still have restrictions on who can push changes to them. Next we’ll improve this
project and request that the owner merges our changes into the original.

Looking at the version control panel in Repl.it

Repl.it includes a version control tab which shows you information about the GitHub repository and
in some cases allows you to push your changes made in Repl.it back to GitHub.

Repl.it and GitHub: Using and contributing to open-source projects 58

Image 4: Viewing details about the repository in the version control tab.

If you select this version control tab from the menu on the left, you’ll see a summary of the linked
repository. Note that it’s already figured out what changeswe’vemade, and it shows that the .replit
file is new. It would be nice for other people who use this repository with GitHub to have the file
automatically, so we might want to push the changes we made back to GitHub.

Note that the owner of the repository is ritza-co though, so you won’t have write permissions for
this repository. If you press the commit & push button, you’ll see an error as shown below.

Image 5: You need permission to push to repositories on GitHub.

Repl.it and GitHub: Using and contributing to open-source projects 59

Forking the project to your own GitHub account

Usually when contributing to open-source projects, you’ll first create a “fork” of the original project.
This means that you make your own version of the project and, as it’s yours, you can make any
changes to it that you want. If you think these changes would be useful to others too and are an
obvious improvement over the original project, you can make a “pull request”, which asks the owner
of the original project to merge your changes into the main canonical project.

Create an account on github.com⁴⁶ or log in to your existing one and navigate back to the original
project (https://github.com/ritza-co/flask-hello-world). In the top right corner, press the Fork button
to create a copy of the project in your own GitHub account.

Image 6: Forking a repository in GitHub.

You should be taken to a new page in GitHub that looks very similar to the old one but which is
owned by your own GitHub username. My GitHub username is sixhobbits so the new URL for me
is https://github.com/sixhobbits/flask-hello-world (but yours will be different).

Now, instead of cloning the original project into Repl.it, create a new repl and import this fork of
the project instead. Instead of going through the import UI again, you can also just create and load
the relevant import URL. These URLs are in the format https://repl.it/github/<githubproject>
so in my case I open https://repl.it/github/sixhobbits/flask-hello-world in my browser (you need to
substitute your own GitHub username for this to work).

Configure the .replit file again and open the version control tab, as before. Under “what did you

⁴⁶https://github.com

https://github.com/
https://github.com/

Repl.it and GitHub: Using and contributing to open-source projects 60

change” enter “add .repl file” or a similar message to describe what contributions you’re making,
and press commit and push.

You’ll see the error again and be presented with the option to connect your Repl.it account to GitHub
to prove that you authorise Repl.it to make these changes to GitHub on your behalf.

You can give Repl.it access to all of your repositories (useful if you want to use this integration a lot),
but by default it will only get permission for the specific repository that we’re working with.

Image 7: Giving Repl.it permission to access your GitHub data.

Press the green approve button and you’ll be directed back to Repl.it. Press the commit & push button
again on Repl.it and this time everything should work without any errors.

Navigate back to your fork of the GitHub project, and you should see that the changes are reflected
in GitHub too.

Repl.it and GitHub: Using and contributing to open-source projects 61

Image 8: Seeing our changes reflected in our GitHub fork.

As you can see, the new .replit file is visible and GitHub prompts you to make a pull request back
into the original repository. Press Pull request, create pull request, add a comment explaining
why your changes should be merged into the original repository, and click Create pull request

again.

Repl.it and GitHub: Using and contributing to open-source projects 62

Image 9: Creating a pull request from GitHub to merge our changes back into the original repository.

The owner of the repository will get a notification about your proposal and can choose to add your
changes or reject them (in this case, don’t be too hopeful about your changes being accepted as the
.replit file being missing is important to follow along the earlier steps of this tutorial �.)

Make it your own

For this tutorial, it’s important that you do the steps yourself so that everything is correctly linked to
your own GitHub account, but if you want an example to play with, use the one below. It’s the same
as the Flask app but it can greet individual users dynamically instead of having a static welcome
message.

Visit https://cwr-06-github–garethdwyer1.repl.co/Gareth⁴⁷ to see it in action (replace the last part of
the URL with your own name to receive a personalised greeting).

You can for our repl from https://repl.it/@GarethDwyer1/cwr-06-github⁴⁸

Can you figure out how it works?

⁴⁷https://cwr-06-github--garethdwyer1.repl.co/Gareth
⁴⁸https://repl.it/@GarethDwyer1/cwr-06-github

https://cwr-06-github--garethdwyer1.repl.co/Gareth
https://repl.it/@GarethDwyer1/cwr-06-github
https://cwr-06-github--garethdwyer1.repl.co/Gareth
https://repl.it/@GarethDwyer1/cwr-06-github

Repl.it and GitHub: Using and contributing to open-source projects 63

Where next?

Cloning repositories and being able to immediately run them is useful in many scenarios, from just
wanting to try out a cool project that you found to running production workflows.

Open-source software only exists because of people who build, maintain, and improve it. There’s
no global committee that decides who gets to be an open-source software developer and you can be
one too. Find a project that you like, look at the “Issues” tab on GitHub to see what problems exist,
and try to fix one. Many issues on GitHub are tagged with “Good first issue” to help direct newer
developers to places where they can get started.

In the next tutorial, we’ll do something a bit different and build a 2D game using PyGame.

Building a game with PyGame and
Repl.it

So far, we’ve mainly seen how to write text-based programs, or those with a basic web front end.
In this tutorial, we’ll instead build a 2D game using PyGame. You’ll use animated sprites and learn
how to:

• Make these sprites move
• Recognise when a sprite is clicked with the mouse.

The basic premise of the game is as follows. You’re a juggler, learning to juggle. Balls will fall down
from the top of the screen, and you’ll need to click them to ‘throw’ them up again. After several
successful throws without dropping any balls, more balls will be added to make the game harder.

Creating a PyGame repl

Although PyGame⁴⁹ is a standard Python library, Repl.it provides it installed as a separate language.
Create a new repl and select PyGame from the language dropdown.

⁴⁹https://en.wikipedia.org/wiki/Pygame

https://en.wikipedia.org/wiki/Pygame
https://en.wikipedia.org/wiki/Pygame

Building a game with PyGame and Repl.it 65

Image 2: Choosing PyGame from the Create New Repl screen.

You’ll see “Python3 with PyGame” displayed in the default console and a separate pane in the Repl.it
IDE where you will be able to see and interact with the game you will create.

The first thing we need is a so-called “sprite”, which is a basic image file that we will use in our
game. Download the tennis ball file available here⁵⁰ and save it to your local machine.

Now upload it to your repl using the upload file button and you should be able to see a preview
of the image by clicking on it in the files pane.

⁵⁰https://raw.githubusercontent.com/ritza-co/public-images/master/small_tennis.png

https://raw.githubusercontent.com/ritza-co/public-images/master/small_tennis.png
https://raw.githubusercontent.com/ritza-co/public-images/master/small_tennis.png

Building a game with PyGame and Repl.it 66

Image 3: Viewing our sprite after uploading it.

Displaying the sprite using PyGame

Our first goal is to display the tennis ball in a game environment using PyGame. To do this, go back
to the main.py file and add the following code.

1 import pygame

2

3 WIDTH = 800

4 HEIGHT = 600

5 BACKGROUND = (0, 0, 0)

6

7 class Ball:

8 def __init__(self):

9 self.image = pygame.image.load("small_tennis.png")

10 self.rect = self.image.get_rect()

11

12 def main():

13 pygame.init()

14 screen = pygame.display.set_mode((WIDTH, HEIGHT))

15 clock = pygame.time.Clock()

16 ball = Ball()

Building a game with PyGame and Repl.it 67

17

18 while True:

19 screen.fill(BACKGROUND)

20 screen.blit(ball.image, ball.rect)

21 pygame.display.flip()

22 clock.tick(60)

23

24 if __name__ == "__main__":

25 main()

This code looks a bit more complicated than it needs to be because in addition to drawing the ball
to the screen, it also sets up a game loop. While basic 2D games appear to move objects around
the screen, they usually actually simulate this effect by redrawing the entire screen many times per
second. To account for this we need to run our logic in a while True: loop.

We start by importing PyGame and setting up some global variables: the size of our screen and the
background color (black). We then define our Ball, setting up an object that knows where to find
the image for the ball and how to get the default coordinates of where the image should be drawn.

We then set up PyGame by calling init() and starting the screen as well as a clock. The clock
is necessary because each loop might take a different amount of time, based on how much logic
needs to run to calculate the new screen. PyGame has built-in logic to calculate how much time
elapses between calls to clock.tick() to draw frames faster or slower as necessary to keep the
game experience smooth.

We start the game loop and call blit on our ball. Blitting⁵¹ refers to moving all of the pixels from
our sprite file (the tennis ball) to our game environment. The flip() function updates our screen
and the tick(60) call means that our game will redraw the screen around 60 times per second.

If you run this code, you should see the ball pop up in the top right pane, as shown below.

⁵¹https://en.wikipedia.org/wiki/Bit_blit

https://en.wikipedia.org/wiki/Bit_blit
https://en.wikipedia.org/wiki/Bit_blit

Building a game with PyGame and Repl.it 68

Image 4: Drawing the tennis ball in our PyGame environment.

Making our tennis ball move with each frame

Although PyGame has a lot of built-in logic for handling common game operations, you still need to
get your hands dirty with calculating some of the basic movements. For every loop, we need to tell
our game the new X and Y coordinates to draw the ball. As we want our ball to move at a constant
speed, we’ll move the X and Y coordinates each loop.

Add two methods to your Ball class: update and move, and add a speed attribute. The new code for
your Ball class should look as follows.

1 class Ball:

2 def __init__(self):

3 self.image = pygame.image.load("small_tennis.png")

4 self.speed = [0, 1]

5 self.rect = self.image.get_rect()

6

7 def update(self):

8 self.move()

9

10 def move(self):

11 self.rect = self.rect.move(self.speed)

Building a game with PyGame and Repl.it 69

Now modify your game loop to include a call to the new update()method. The loop should look as
follows.

1 while True:

2 screen.fill(BACKGROUND)

3 screen.blit(ball.image, ball.rect)

4 ball.update()

5 pygame.display.flip()

6 clock.tick(60)

The (0, 1) tuple causes the ball to move its Y coordinate by 1 each loop and keep a constant X
coordinate. This has the effect of making the ball drop slowly down the screen. Run your code again
to check that this works.

Image 5: The ball falling at a constant rate.

click to open gif ⁵²

When the ball gets to the bottom of the screen, it’ll just keep falling but that’s OK for now. Let’s see
how we can add click detection.

⁵²https://i.ritzastatic.com/repl/codewithrepl/07-pygame/07-05-GIF-falling-ball.gif

https://i.ritzastatic.com/repl/codewithrepl/07-pygame/07-05-GIF-falling-ball.gif
https://i.ritzastatic.com/repl/codewithrepl/07-pygame/07-05-GIF-falling-ball.gif

Building a game with PyGame and Repl.it 70

Processing events: Detecting mouse clicks

PyGame records all “events”, includingmouse clicks, andmakes these available through pygame.event.get:().
We need to check what events happened in each game loop and see if any of them were important.

If the user clicks on an empty space, that will still be recorded but we will simply ignore it. If the
user clicks on a falling ball, we want it to change direction.

To achieve this, add a for loop inside the existing while loop. The entire game loop should look as
follows:

1 while True:

2 for event in pygame.event.get():

3 if event.type == pygame.MOUSEBUTTONDOWN:

4 if ball.rect.collidepoint(pygame.mouse.get_pos()):

5 ball.speed = [0,-1]

6 screen.fill(BACKGROUND)

7 screen.blit(ball.image, ball.rect)

8 ball.update()

9 pygame.display.flip()

10 clock.tick(60)

With this code, we loop through all events and check for left click (MOUSEBUTTONDOWN) events. If we
find one, we check if the click happened on top of the ball (using collidepoint() which checks
for overlapping coordinates), and in this case we reverse the direction of the ball (still no x-axis or
horizontal movement, but we make the ball move negatively on the y-axis, which is up.)

If you run this code again, you should now be able to click on the ball (let it fall for a while first)
and see it change direction until it goes off the top of the screen.

Making the ball bounce off the edges and move
randomly

To simulate juggling, we want the ball to bounce off the “roof” (top edge of the screen) and “walls”
(left and right edge). If the ball touches the “floor” (bottom edge) we want to kill it and remove it
from the game as a dropped ball.

To achieve this, we’ll add logic to our update() method (this is why we kept it separate from our
move() method before). Add two lines of code to update() to make it look as follows.

Building a game with PyGame and Repl.it 71

1 def update(self):

2 if self.rect.top < 0:

3 self.speed = [0, 1]

4 self.move()

This checks to see if the top of the ball is above the top of the screen. If it is, we set the speed back
to (0, 1) (moving down).

Image 6: Now we can bounce the ball off the ceiling.

click to open gif ⁵³

So far, we have restricted the ball to moving vertically, but we can apply the same principles and
move it horizontally or diagonally too. Let’s also add some randomness into the mix so that it’s
less predictable (and harder for the player to press). The ball will randomly change its horizontal
movement when it bounces off the ceiling and each time we throw it.

Import the randommodule at the top of your file and use the random.randrange() function to specify
the range of acceptable horizontal movement. Also modify the update() function to detect if the ball
is falling off the left or right edges and reverse its horizontal movement in this case.

Finally, modify the collision detection section to add randomness there too.

Your full code should now look as follows.

⁵³https://i.ritzastatic.com/repl/codewithrepl/07-pygame/07-06-GIF-bounce-off-roof.gif

https://i.ritzastatic.com/repl/codewithrepl/07-pygame/07-06-GIF-bounce-off-roof.gif
https://i.ritzastatic.com/repl/codewithrepl/07-pygame/07-06-GIF-bounce-off-roof.gif

Building a game with PyGame and Repl.it 72

1 import pygame

2 import random

3

4 WIDTH = 800

5 HEIGHT = 600

6 BACKGROUND = (0, 0, 0)

7

8 class Ball:

9 def __init__(self):

10 self.image = pygame.image.load("small_tennis.png")

11 self.speed = [random.uniform(-4,4), 2]

12 self.rect = self.image.get_rect()

13

14 def update(self):

15 if self.rect.top < 0:

16 self.speed[1] = -self.speed[1]

17 self.speed[0] = random.uniform(-4, 4)

18 elif self.rect.left < 0 or self.rect.right > WIDTH:

19 self.speed[0] = -self.speed[0]

20 self.move()

21

22 def move(self):

23 self.rect = self.rect.move(self.speed)

24

25 def main():

26 clock = pygame.time.Clock()

27 ball = Ball()

28 pygame.init()

29 screen = pygame.display.set_mode((WIDTH, HEIGHT))

30

31 while True:

32 for event in pygame.event.get():

33 if event.type == pygame.MOUSEBUTTONDOWN:

34 if ball.rect.collidepoint(pygame.mouse.get_pos()):

35 ball.speed[0] = random.uniform(-4, 4)

36 ball.speed[1] = -2

37 screen.fill(BACKGROUND)

38 screen.blit(ball.image, ball.rect)

39 ball.update()

40 pygame.display.flip()

41 clock.tick(60)

42

43 if __name__ == "__main__":

Building a game with PyGame and Repl.it 73

44 main()

If you run your code again, you should be able to juggle the ball around by clicking on it and watch
it randomly bounce off the ceiling and walls.

Adding more balls

Juggling with one ball is no fun, so let’s add some more. Because we used Object Oriented
Programming (OOP), we can create more balls by instantiating more Ball() objects. We’ll need
to keep track of these so we’ll add them to an array. For each iteration of the game loop, we’ll need
to update the position of each ball, so we’ll need one more loop to account for this.

We also want to start keeping track of which of our balls is “alive” (that is, hasn’t hit the ground), so
add an attribute for this to the Ball class too, in the __init__ function.

1 self.alive = True

In the main() function, directly before the while True: line, add the following code.

1 ball1 = Ball()

2 ball2 = Ball()

3 ball3 = Ball()

4

5 balls = [ball1, ball2, ball3]

Now remove the ball=Ball(), ball.update() and screen.blit(...) lines and replace them with
a loop that updates all of the balls and removes the dead ones (even though we haven’t written the
logic yet to stop the balls from ever being alive.)

1 for i, ball in enumerate(balls):

2 if ball.alive:

3 screen.blit(ball.image, ball.rect)

4 ball.update()

5 if not ball.alive:

6 del balls[i]

You’ll also need to account for multiple balls in the the event detection loop. For each event, loop
through all of the balls and check if the mouse click collided with any of them.

At this point, the full main() function should look as follows.

Building a game with PyGame and Repl.it 74

1 def main():

2 clock = pygame.time.Clock()

3 pygame.init()

4 screen = pygame.display.set_mode((WIDTH, HEIGHT))

5

6 ball1 = Ball()

7 ball2 = Ball()

8 ball3 = Ball()

9

10 balls = [ball1, ball2, ball3]

11

12 while True:

13 for event in pygame.event.get():

14 if event.type == pygame.MOUSEBUTTONDOWN:

15 for ball in balls:

16 if ball.rect.collidepoint(pygame.mouse.get_pos()):

17 ball.speed[0] = random.randrange(-4, 4)

18 ball.speed[1] = -2

19 break

20 screen.fill(BACKGROUND)

21 for i, ball in enumerate(balls):

22 if ball.alive:

23 screen.blit(ball.image, ball.rect)

24 ball.update()

25 if not ball.alive:

26 del balls[i]

27 pygame.display.flip()

28 clock.tick(60)

To kill balls when they fall through the floor, we can add another check to the update() function as
follows.

1 elif self.rect.bottom > HEIGHT:

2 self.alive = False

Run the code again and you should be able to juggle three balls. See how long you can keep them
in the air.

Building a game with PyGame and Repl.it 75

Image 7: Juggling three balls.

click to open gif ⁵⁴

If you want a harder version, add a counter to keep track of how many successful throws the player
has achieved and add a new ball for every three successful throws.

⁵⁴https://i.ritzastatic.com/repl/codewithrepl/07-pygame/07-07-GIF-three-balls.gif

https://i.ritzastatic.com/repl/codewithrepl/07-pygame/07-07-GIF-three-balls.gif
https://i.ritzastatic.com/repl/codewithrepl/07-pygame/07-07-GIF-three-balls.gif

Building a game with PyGame and Repl.it 76

Image 8: Adding more balls.

Now the game is to see how many balls you can juggle with. If it’s too easy, modify the speeds and
angles of the balls.

Make it your own

If you followed along, you’ll already have your own version of the repl to extend. If not, start from
ours. Fork it from https://repl.it/@GarethDwyer1/cwr-07-juggling-with-pygame⁵⁵.

Where next?

You’ve learned how to make 2D games using PyGame. If you want to make more games but are
stuck for ideas, check out PyGame’s extensive collection of examples⁵⁶.

You could also extend the juggling game more. For example, make the balls accelerate as they fall,
or increase the speed of all balls over time.

⁵⁵https://repl.it/@GarethDwyer1/cwr-07-juggling-with-pygame
⁵⁶https://www.pygame.org/docs/ref/examples.html

https://repl.it/@GarethDwyer1/cwr-07-juggling-with-pygame
https://www.pygame.org/docs/ref/examples.html
https://repl.it/@GarethDwyer1/cwr-07-juggling-with-pygame
https://www.pygame.org/docs/ref/examples.html

Staying safe: Keeping your passwords
and other secrets secure
While developing software fully in public has many benefits, it also means that we need to be
extra careful about leaking sensitive information. Because all of our repls are public by default,
we shouldn’t store passwords, access keys, personal information, or anything else sensitive in them.

Even if you’re coding offline or only in private repls, it’s good practice to keep your code separate
from any private information in any case.

In this tutorial, we’ll look at how to use the special .env file that Repl.it provides to set environment
variables⁵⁷. We can use these to store sensitive information and Repl.it will make sure that this file
isn’t included when others fork our repl.

Understanding .env files

Similarly to the .replit file that we saw in a previous tutorial, the .env file is a special Repl.it file.
If you call a file exactly .env, Repl.it will

• Not include this file in any forks of the repl
• Attempt to parse key-value pairs out of this file and make them available to the underlying
operating system.

This can be used to store all kinds of configuration, but it’s commonly used for passwords, API keys,
and database credentials.

The structure of a .env file

A .env file consists of keys-value pairs, one per line, separated by an = sign. Environment variables
are traditionally in ALL_CAPS and separated by underscores. For example, you might have a .env
file with the following.

1 SECRET_PASSWORD=ThisIsMySuperSecretP@ssword!!

With this file present, your scripts can load the variable SECRET_PASSWORD from the operating system
environment directly.

Unlike in Python, where x = 1 and x= 1 are the same, in .env files, spaces matter and you should
be careful to not add any extra ones.

⁵⁷https://en.wikipedia.org/wiki/Environment_variable

https://en.wikipedia.org/wiki/Environment_variable
https://en.wikipedia.org/wiki/Environment_variable
https://en.wikipedia.org/wiki/Environment_variable

Staying safe: Keeping your passwords and other secrets secure 78

Refactoring our weather project to keep our API key
secure

In the working with files tutorial⁵⁸ we used the WeatherStack API to fetch weather data and save it
to disk. Part of this involved getting an API key from WeatherStack. Because WeatherStack limits
the number of calls each key can make per day, it would be bad if someone else used up the quota
for our key and broke our app as a result.

Let’s refactor the WeatherStack project to prevent our key from being made public.

Visit https://repl.it/@GarethDwyer1/cwr-02-weather-report⁵⁹ (or your own version of this if you
followed along previously) and create a new fork by pressing the pencil icon and then fork.

Image 1: Forking our repl before refactoring it.

We have API_KEY defined near the top of main.py, and this is the value that we want to keep secret.
Let’s move it to a .env file instead.

Click on the add file icon and call your new file .env. Be sure to add the initial full stop and don’t
add any spaces.

⁵⁸http://www.codewithrepl.it/02-managing-files-using-repl-it.html
⁵⁹https://repl.it/@GarethDwyer1/cwr-02-weather-report

http://www.codewithrepl.it/02-managing-files-using-repl-it.html
https://repl.it/@GarethDwyer1/cwr-02-weather-report
http://www.codewithrepl.it/02-managing-files-using-repl-it.html
https://repl.it/@GarethDwyer1/cwr-02-weather-report

Staying safe: Keeping your passwords and other secrets secure 79

Image 2: Creating the .env file to store sensitive information.

Now remove the API_KEY variable from the main.py file and add it to the .env file, removing all
quotation marks (") and spaces.

Your .env file should look as follows (but use your own WeatherStack API instead of the example
given here).

1 API_KEY=baaf201731c0cbc4af2c519cb578f907

Testing that the file is not copied into others’ forks

If you copy your project’s URL into an incognito window (or use a separate browser), you’ll see all
of the other files as usual, but the .env file will not be there. Your API key, and the entire .env file,
can only be seen when you’re logged into the Repl.it accout that created it.

Staying safe: Keeping your passwords and other secrets secure 80

Image 3: Checking that the .env file isn’t included in public versions of our repl.

Using environment variables in our script

Our API key is now securely defined and available to the project, but we still need to tell our code
where to find it. Because this data is stored in environment variables, we need to use the operating
system (os) module to access it.

At the top of your main.py file, add an import for os and load the API_KEY into a variable as follows.

1 import requests

2 import os

3

4 API_KEY = os.getenv("API_KEY")

The getenv function looks for an environment variable of a specific name. Now our code (and anyone
who sees it) only needs to know the name of the key that stores our private API key, instead of the
API key itself. You should be able to run your code again at this point to verify that new weather
entries are correctly added to the relevant files.

There are many other environment variables that make various parts of an operating system work
correctly. For example, you could also take a look at the LANG and PATH environment variables, which
will show you that Repl.it has their servers configured to use US English and 8-bit unicode character
encoding, and have some default places where the system looks for executable programs.

Staying safe: Keeping your passwords and other secrets secure 81

Image 4: Looking at other environment variables.

Time travelling to find secrets

We removed the sensitive information from our project, but it’s not actually completely gone. It’s
securely placed in our .env file, but it’s also still saved in the repl’s history.

Repl.it saves every change you make to a project so that you can always go back to previous versions
if you make a mistake or need to check what has changed.

Click on the history button in the top bar, as shown below.

Image 5: Diving into the history of our repl.

You should see a bunch of entries from each change you’ve made to this project. Click through them
and find the one where you deleted your API key. As you can see, the history viewer shows not only
which lines have been changed, but also what was there before.

Staying safe: Keeping your passwords and other secrets secure 82

Image 6: Finding the credentials in the change logs.

Luckily history is not included when other people fork your repl so this is not a huge problem, but
it’s important to keep in mind where people might find your credentials.

In our case, the worst case scenario is that someone finds our WeatherStack API key and uses up the
quota, which is not the end of the world. A far more painful (and very common) scenario involves
real money. For example, a developer signs up for a free trial on an expensive service like AWS,
links a credit card, and then accidentally pushes the credentials for the service to GitHub or similar.
Even if they realise their mistake and delete these within seconds, the credentials themselves are still
available in the history of their repository. Hackers have bots that regularly look out for mistakes
like this and use the credentials to spin up thousands of servers (often to mine cryptocurrency or
join a botnet attack), potentially costing the poor developer thousands of dollars before they notice.

Rotating credentials

Even if there’s a small chance that your API key has been exposed, it’s important to rotate it. This
involves creating a new key, ensuring the new key works with your service, and then disabling the
old one.

In the case of WeatherStack, there is no option to create a new key while keeping the old one active,
so we need to reset it and then copy the new key to our .env file (meaning that our app can’t function
between the time that we disable the old key and replace it with the new one).

Staying safe: Keeping your passwords and other secrets secure 83

Image 7: Rotating our WeatherStack API key.

Visit your WeatherStack account and press the reset button to get your new API key.

Make it your own

You can make a copy of the new repl below. If you fork it, the .env file will be missing, so you’ll
need to create it and add your WeatherStack API key before it will run.

Fork this repl from https://repl.it/@GarethDwyer1/cwr-08-secrets-env⁶⁰

Where next?

There’s a lot more that you can do with .env files. In a later tutorial, we’ll use it to store database
credentials (which are more important to keep safe than a free API key).

You could also keep other private information in environment variables. For example, if you code a
hangman game, you could keep the word that people need to guess in there so that you can share
your code without spoiling the game.

⁶⁰https://repl.it/@GarethDwyer1/cwr-08-secrets-env

https://repl.it/@GarethDwyer1/cwr-08-secrets-env
https://repl.it/@GarethDwyer1/cwr-08-secrets-env

An introduction to pytest and doing
test-driven development with Repl.it
In this tutorial we’ll introduce test-driven development and you’ll see how to use pytest⁶¹ to ensure
that your code is working as expected.

pytest lets you specify inputs and expected outputs for your functions. It runs each input through
your function and validates that the output is correct. pytest is a Python library and works just like
any other Python library: you install it through your package manager and you can import it into
your Python code. Tests are written in Python too, so you’ll have code testing other code.

Test-driven development or TDD is the practice of writing tests before you write code. You can read
more about TDD and why it’s popular on Wikipedia⁶².

Specifically you’ll:

• See how to structure your project to keep your tests separate but still have them refer to your
main code files

• Figure out the requirements for a function that can split a full name into first and last name
components

• Write tests for this function
• Write the actual function.

Creating a project structure for pytest

For large projects, it’s useful to keep your testing code separate from your application code. In order
for this to work, you’ll need your files set up in specific places, and you’ll need to create individual
Python modules so that you can refer to different parts of the project easily.

Create a new Python repl called namesplitter. As always, it’ll already have a main.py file, but we’re
going to put our name splitting function into a different module called utils, which can house any
helper code that our main application relies on. We also want a dedicated place for our tests.

Create two new folders: one called utils and one called tests, using the add folder button. Note
that when you press this button it will by default create a folder in your currently active folder, so
select the main.py file after creating the first folder or the second folder will be created inside the
first folder.

⁶¹https://docs.pytest.org/en/stable/
⁶²https://en.wikipedia.org/wiki/Test-driven_development

https://docs.pytest.org/en/stable/
https://en.wikipedia.org/wiki/Test-driven_development
https://docs.pytest.org/en/stable/
https://en.wikipedia.org/wiki/Test-driven_development

An introduction to pytest and doing test-driven development with Repl.it 85

You want both the folders to be at the root level of your project.

Now add a file at the root level of the project called __init__.py. This is a special file that indicates
to Python that we want our project to be treated as a “module”: something that other files can refer
to by name and import pieces from. Also add an __init__.py file inside the utils folder and the
tests folder. These files will remain empty, but it’s important that they exist for our tests to run.
Their presence specifies that our main project should be treated as a module and that any code in
our utils and tests folders should be treated as submodules of the main one.

Finally, create the files where we’ll actually write code. Inside the utils folder create a file called
name_helper.py and inside the tests folder create one called test_name_helper.py. Your project
should now look as follows. Make sure that you have all the files and folders with exactly these
names, in the correct places.

Image 1: Setting up our project structure for pytest.

Defining examples for the name split function

Splitting names is useful in many contexts. For example, it is a common requirement when users
sign up on websites with their full names and then companies want to send personalised emails
addressing users by their first name only. You might think that this is as simple as splitting a name
based on spaces as in the following example.

An introduction to pytest and doing test-driven development with Repl.it 86

1 def split_name(name):

2 first_name, last_name = name.split()

3 return [first_name, last_name]

4

5 print(split_name("John Smith"))

6 # >>> ["John", "Smith"]

While this does indeed work in many cases, names are surprisingly complicated and it’s very
common to make mistakes when dealing with them as programmers, as discussed in this classic
article⁶³. It would be a huge project to try and deal with any name, but let’s imagine that you have
requirements to deal with the following kinds of names:

• First Last, e.g. John Smith
• First Middle Last, e.g John Patrick Smith (John Patrick taken as first name)
• First Middle Middle Last, e.g. John Patrick Thomson Smith (John Patrick Thomson taken as
first name)

• First last last Last, e.g. Johan van der Berg (note the lowercase letters, Johan taken as first name,
the rest as last)

• First Middle last last Last, e.g. Johan Patrick van der Berg (note the lowercase letters, Johan
taken as first name, the rest as last)

• Last, e.g. Smith (we can assume that if we are given only one name, it is the last name)

Specifically, you can assume that once you find a name starting with a lowercase letter, it signifies
the start of a last name, and that all other names starting with a capital letter are part of the first
and middle names. Middle names can be combined with first names.

Of course, this does not cover all possibilities, but it is a good starting point in terms of requirements.

Using TDD, we always write failing tests first. The idea is that we should write a test about how
some code should behave, check to make sure that it breaks in the way we expect (as the code isn’t
there). Only then do we write the actual code and check that the tests now pass.

Writing the test cases for our names function

Now that we understand what our function should do, we can write tests to check that it does. In
the tests/test_name_helper.py file, add the following code.

⁶³https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/

https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/

An introduction to pytest and doing test-driven development with Repl.it 87

1 from namesplitter.utils import name_helper

2

3 def test_two_names():

4 assert name_helper.split_name("John Smith") == ["John", "Smith"]

Note that the namesplitter in the first line is taken from the name of your Repl.it project, which
defines the names of the parent module. If you called your project something else, you’ll need to
use that name in the import line. It’s important to not include special characters in the project name
(including a hyphen, so names like my-tdd-demo are out) or the import won’t work.

The assert keyword simply checks that a specific statement evaluates to True. In this case, we call
our function on the left-hand side and give the expected value on the right-hand side, and ask assert
to check if they are the same.

This is our most basic case: we have two names and we simply split them on the single space. Of
course, we haven’t written the split_name function anywhere yet, so we expect this test to fail. Let’s
check.

Usually you would run your tests by typing py.test into your terminal, but using Repl.it things
work better if we import pytest into our code base and run it from there. This is because a) our
terminal is always already activated into a Python environment and b) caching gets updated when
we press the Run button, so invoking our tests from outside of this means that they could run on old
versions of our code, causing confusion.

Let’s run them from our main.py file for now as we aren’t using it for anything else yet. Add the
following to this file.

1 import pytest

2 pytest.main()

Press the Run button. pytest does automatic test discovery so you don’t need to tell it which tests
to run. It will look for files that start with test and for functions that start with test_ and assume
these are tests. (You can read more about exactly how test discovery works and can be configured
here⁶⁴.)

You should see some scary looking red failures, as shown below. (pytest uses dividors such as ======
and ------ to format sections and these can get messy if your output pane is too narrow. If things
look a bit wonky try making it wider and rerunning.)

⁶⁴https://docs.pytest.org/en/reorganize-docs/new-docs/user/naming_conventions.html

https://docs.pytest.org/en/reorganize-docs/new-docs/user/naming_conventions.html
https://docs.pytest.org/en/reorganize-docs/new-docs/user/naming_conventions.html

An introduction to pytest and doing test-driven development with Repl.it 88

Image 2: Reading the pytest error messages.

If you read the output from the top down you’ll see a bunch of different things happened. First,
pytest ran test discovery and found one test. It ran this and it failed so you see the first red F above
the FAILURES section. That tells us exactly which line of the test failed and how. In this case, it was
an AttributeError as we tried to use split_name which was not defined. Let’s go fix that.

Head over to the utils/name_helper.py file and add the following code.

1 def split_name(name):

2 first_name, last_name = name.split()

3 return [first_name, last_name]

This is the very simple version we discussed earlier that can only handle two names, but it will solve
the name error and TDD is all about small increments. Press Run to re-run the tests and you should
see a far more friendly green output now, as below, indicating that all of our tests passed.

An introduction to pytest and doing test-driven development with Repl.it 89

Image 3: Seeing our tests pass after updating the code.

Before fixing our function to handle more complex cases, let’s first write the tests and check that
they fail. Go back to tests/test_name_helper.py and add the following four test functions beneath
the existing one.

1 from namesplitter.utils import name_helper

2

3 def test_two_names():

4 assert name_helper.split_name("John Smith") == ["John", "Smith"]

5

6 def test_middle_names():

7 assert name_helper.split_name("John Patrick Smith") == ["John Patrick", "Smith"]

8 assert name_helper.split_name("John Patrick Thomson Smith") == ["John Patrick Th\

9 omson", "Smith"]

10

11 def test_surname_prefixes():

12 assert name_helper.split_name("John van der Berg") == ["John", "van der Berg"]

13 assert name_helper.split_name("John Patrick van der Berg") == ["John Patrick", "\

14 van der Berg"]

15

16 def test_split_name_onename():

17 assert name_helper.split_name("Smith") == ["", "Smith"]

18

19 def test_split_name_nonames():

20 assert name_helper.split_name("") == ["", ""]

Rerun the tests and you should see a lot more output now. If you scroll back up to the most recent
===== test session starts ===== section, it should look as follows.

An introduction to pytest and doing test-driven development with Repl.it 90

Image 4: Seeing more failures after adding more tests.

In the top section, the .FFFF is shorthand for “five tests were run, the first one passed and the next
four failed” (a green dot indicates a pass and a red F indicates a failure). If you had more files with
tests in them, you would see a line like this per file, with one character of output per test.

The failures are described in detail after this, but they all amount to variations of the same problem.
Our code currently assumes that we will always get exactly two names, so it either has too many or
too few values after running split() on the test examples.

Fixing our split_name function

Go back to name_helper.py and modify it to look as follows.

1 def split_name(name):

2 names = name.split(" ")

3

4 if not name:

5 return ["", ""]

6

7 if len(names) == 1:

8 return ["", name]

9

10 if len(names) == 2:

An introduction to pytest and doing test-driven development with Repl.it 91

11 firstname, lastname = name.split(" ")

12 return [firstname, lastname]

This should handle the case of zero, one, or two names. Let’s run our tests again to see if we’ve made
progress before we handle the more difficult cases. You should get a lot less output now and three
green dots, as shown below.

Image 5: Progress: some of our tests pass now.

The rest of the output indicates that it’s the middle names and surname prefix examples that are
still tripping up our function, so let’s add the code we need to fix those. Another important aspect
of TDD is keeping your functions as small as possible so that they are easier to understand, test, and
reuse, so let’s write a second function to handle the three or more names cases.

Add the new function called split_name_three_plus() and add an else clause to the existing
split_name function where you call this new function. The entire file should now look as follows.

1 def split_name_three_plus(names):

2 first_names = []

3 last_names = []

4

5 for i, name in enumerate(names):

6 if i == len(names) - 1:

7 last_names.append(name)

8 elif name[0].islower():

9 last_names.extend(names[i:])

10 break

11 else:

An introduction to pytest and doing test-driven development with Repl.it 92

12 first_names.append(name)

13 first_name = " ".join(first_names)

14 last_name = " ".join(last_names)

15 return [first_name, last_name]

16

17 def split_name(name):

18 names = name.split(" ")

19

20 if not name:

21 return ["", ""]

22

23 if len(names) == 1:

24 return ["", name]

25

26 if len(names) == 2:

27 firstname, lastname = name.split(" ")

28 return [firstname, lastname]

29 else:

30 return split_name_three_plus(names)

The new function works by always appending names to the first_names list until it gets to the last
name, or until it encounters a name that starts with a lowercase letter, at which point it adds all of
the remaining names to last_names list. If you run the tests again, they should all pass now.

Image 6: All of the tests pass after adding a new function.

The tests were already helpful in making sure that we understood the problem and that our function

An introduction to pytest and doing test-driven development with Repl.it 93

worked for specific examples. If we had made any off-by-one mistakes in our code that deals with
three or more names, our tests would have caught them. If we need to refactor or change our code in
future, we can also use our tests to make sure that our new code doesn’t introduce any regressions
(where fixing problems causes code to break on other examples that worked before the fix.)

Using our function

Let’s build a very basic application to use our function. Replace the testing code in main.py with the
following.

1 from utils import name_helper

2

3 name = input("Please enter your full name: ")

4

5 first_name, last_name = name_helper.split_name(name)

6

7 print(f"Your first name is: {first_name}")

8 print(f"Your last name is: {last_name}")

If you run this, it will prompt the user for their name and then display their first and last name.

Image 7: Using our function in a basic console application.

Because you’re using the main.py file now, you can also invoke pytest directly from the output
console on the right by typing import pytest; pytest.main(). Note that updates to your code are
only properly applied when you press the Run button though, so make sure to run your code between
changes before running the tests.

An introduction to pytest and doing test-driven development with Repl.it 94

Image 8: Triggering a new error and invoking pytest from the output pane.

Make it your own

We’ve written a name splitter that can handle some names more complicated than just “John Smith”.
It’s not perfect though: for example, if you put in a name with two consecutive spaces it will crash
our program. You could fork the project and fix this by first writing a test with consecutive spaces
and then modifying the code to handle this (and any other edge cases you can think of).

You can find the name splitter repl at https://repl.it/@GarethDwyer1/namesplitter⁶⁵

Where next

You’ve learned to do TDD in this project. It’s a popular style of programming, but it’s not for
everyone. Even if you decide not to use TDD, having tests is still very useful and it’s not uncommon
for large projects to have thousands or millions of tests.

Take a look at the big list of naughty strings⁶⁶ for a project that collects inputs that often cause
software to break. You could also read How SQLite Is Tested⁶⁷ which explains how SQLite, a popular
lightweight database, has 150 thousand lines of code and nearly 100 million(!) lines of tests.

In the next tutorial, we’ll show you how to become a Repl.it poweruser by taking advantage of the
productivity features it offers.

⁶⁵https://repl.it/@GarethDwyer1/namesplitter
⁶⁶https://github.com/minimaxir/big-list-of-naughty-strings
⁶⁷https://www.sqlite.org/testing.html

https://repl.it/@GarethDwyer1/namesplitter
https://github.com/minimaxir/big-list-of-naughty-strings
https://www.sqlite.org/testing.html
https://repl.it/@GarethDwyer1/namesplitter
https://github.com/minimaxir/big-list-of-naughty-strings
https://www.sqlite.org/testing.html

Productivity hacks
The images in this chapter are mostly .gif files, click here⁶⁸ to access the web version of this chapter

After coding for a while, you may find that there are some repetitive things that take up unnecessary
time. For example, searching for and updating a variable name can seem laborious. Luckily, Repl.it
has some built-in productivity tools that we’ll take a look at in this tutorial.

Specifically, you’ll see how to:

• Make simultaneous changes in several parts of your file using multiple cursors
• Use keyboard shortcuts to quickly carry out tasks without the delay of reaching for your mouse
• Switch to Vim or Emacs keybindings for full mouseless control.

Similarly to learning to touch type, there is often a steep learning curve when you start to use
advanced code editing features. They might even substantially slow you down at first, but once you
master them you’ll soar past the limits of what you could achieve without these aids.

Using the global command palette

If you hit Ctrl+K (Cmd+K on MacOS) you’ll see the following modal pop up, which lets you navigate
through different parts of Repl.it at lightning speed using only your keyboard. If you have a lot of
files, it’s often useful to open them like this rather than scrolling through the directory structure in
the files pane (the find option searches through files by their name while the search option searches
through files by their contents.)

⁶⁸https://docs.repl.it/tutorials/10-productivity-hacks

https://docs.repl.it/tutorials/10-productivity-hacks
https://docs.repl.it/tutorials/10-productivity-hacks

Productivity hacks 96

Image 1: Using the global command palette.

The keyboard shortcut indicated to the right of each option shows how to activate that option directly
without opening up the global command palette, but once it’s open you can type in a part of any of
the options to activate that option. For example, in our weather project app, I can type Cmd+K and
then type fi (start of find) and press Enter and then type Lo (start of London.txt) and press Enter
again to quickly open the weather log for London.

Productivity hacks 97

Image 2: Opening a file with the global command palette.

Of course, with only six files it might be faster to reach for my mouse, but as the find searches
through all files in all directories this method can be significantly faster for larger projects.

Opening up the multiplayer, version control, and settings panes using this method is also faster once
the habit is ingrained compared to moving the mouse to the small icons on the left bar. And while
pressing Ctrl+Enter or Cmd+Enter to run your code is faster than choosing “Run” from this global
command ette, Ctrl+K is only a single shortcut to remember and it will remind you of any other
shortcuts you can’t recall.

Using the code editing command palette

The code command palette is similar to the global command palette, but it’s specific to editing
and navigating your code, allowing you to do advance find+replace procedures, jump to specific
functions and more.

To access the code command palette press F1 or Ctrl+Shift+P (cmd+shift+P on MacOS). Note that
if you’re using Firefox the second option will open an incognito window instead.

You can use the shortcuts directly from the command palette by selecting the code you wish to edit
and clicking on the command in the drop-down menu, or use it to refresh your memory on the
keybindings associated with the shortcuts you use often.

Productivity hacks 98

Image 3: Opening the command palette.

Let’s take a look at how these work by editing the PyGame juggling project⁶⁹ that we covered in a
previous tutorial⁷⁰.

Instead of carrying out the suggested operations as you usually would, use Repl.it’s productivity
features instead.

Duplicating entire lines

Sometimes you need two very similar lines of code directly after each other. Instead of copying and
pasting the line or typing it out again, you can use the duplicate row feature, which will replicate
the current line either above or below.

For example, our juggling project includes the following code to instantiate the initial three balls.

1 ball1 = Ball()

2 ball2 = Ball()

3 ball3 = Ball()

Instead of typing out all three lines, you can type out the first one, leave your cursor position on that
line, and press Shift+Alt+down (shift+option+down on MacOS) twice. This will create two copies of
the line, directly below the original one, and then you can simply change the number in the variable
to account for the second two balls.

⁶⁹https://repl.it/@GarethDwyer1/cwr-07-juggling-with-pygame
⁷⁰http://www.codewithrepl.it/07-building-a-game-with-pygame.html

https://repl.it/@GarethDwyer1/cwr-07-juggling-with-pygame
http://www.codewithrepl.it/07-building-a-game-with-pygame.html
https://repl.it/@GarethDwyer1/cwr-07-juggling-with-pygame
http://www.codewithrepl.it/07-building-a-game-with-pygame.html

Productivity hacks 99

Image 4: Copying the current selected line.

Deleting entire lines

There may be instances where you’d want to delete large chunks of code at a time (it happens to the
best of us!).

Pressing Ctrl+Shift+K (cmd+shift+K on MacOS) deletes the line underneath your cursor (or if you
have multiple lines selected it will delete all of them.)

Instead of deleting the entire line, you can also delete from your cursor up to the end of the line or
from your cursor to the beginning of the line. The shortcuts for these are

• Ctrl+Backspace (cmd+backspace on MacOS) to delete backwards
• Ctrl+K (same on MacOS) to delete forwards

As an example, below you can see how we might use this to first delete one of our elif blocks by
doing two “delete line” operations. We then change our random speed to be constant by using a
“delete to end of line” operation from the = sign and then typing our constant.

Productivity hacks 100

Image 5: Deleting selected lines of code.

Inserting blank lines

It’s also common to need to add a new line of code above or below the current one. Instead of using
your mouse or arrow keys to get to the right place and then pressing Enter, you can instead use an
“insert line” operation.

Press Ctrl+Shift+Enter (cmd+shift+enter on MacOS) to insert a blank line directly above the
current one and move the cursor to the start of it (Repl.it will even maintain the current level of
indentatin for you).

Productivity hacks 101

Image 6: Inserting lines.

Indenting and dedenting lines

When writing Python, you probably pay more attention to whitespace (spaces or tabs) than in other
langauges, which use braces to handle logic. You’re probably used to indenting and dedenting using
Tab and Shift+Tab, which requires you to first place the cursor at the start of the line.

Instead you can use Ctrl+] (cmd+] on MacOS) to indent and dedent the line no matter where your
cursor is. For example, if you need to fix the indentation in the following code, you can
* put your cursor on the for line
* press Ctrl+]
* press down
* press Shift+down
* press Ctrl+] again twice.

Productivity hacks 102

Now your code’s indentation will be fixed.

Image 7: Indenting a line.

Moving blocks of code within a file

Sometimes you need to move a block of code up or down in the file. For example, our update()
function uses our move() function, but move() is only defined later. For readability, it’s good to try
ensure that your functions only call functions that have already been defined further up (assuming
that someone else is reading the code top down, they will remember the move() function’s definition
before seeing it used).

Instead of cutting and pasting a block, you can shunt it by pressing Alt+up or Alt+down (option+up
and option+down onMacOS). As with the others, this works on the line under your cursor or a larger
selection.

Productivity hacks 103

Image 8:Moving the current line selection.

Adding cursors

Sometimes it’s useful to make exactly the same changes in multiple places at once. For example, we
might want to rename our speed attribute to velocity. Put your cursor anywhere on the word that
you want to change and press Ctrl+D (cmd+D on MacOS). Repeatedly press Ctrl+D to select matching
words individually, each with their own cursor. Now you can apply edits and they will appear at
each selection, as below.

Productivity hacks 104

Image 9: Adding cursors to multiple instances of the same selection.

If youwantmultiple cursors on consecutive lines, press Ctrl+Alt+up or Ctrl+Alt+down (cmd+option+up
and cmd+option+down on MacOs). For example, if we want a square game we could change both
width and height to be 1000 simultaneously as follows.

Productivity hacks 105

Image 10: Adding cursors to multiple lines.

Navigating to specific pieces of code

Sometimes, especially in larger projects, you’ll call a function or instantiate an object far fromwhere
that function or object is defined (either thousands of lines away in the same file, or in a different
file altogether).

If you’re reading a piece of code that calls a function and you want to quickly see what that
function actually does, you can use the go to definition keybinding (F12 or cmd+F12 on MacOS).
This will jump to the definition of the function or class selected. The peek definition has a similar
functionality, but instead of jumping to the definition, it opens in a separate modal. For example,
below, the cursor is on the instantiation of Ball() and we can quickly see how this class is defined.

Productivity hacks 106

Image 11: Peeking the definition.

The go to line operation (Ctrl+G) allows you to navigate to a line by giving its line number. This is
useful to track down the source of those error messages that tell you what line had an issue, or if
you’re on a call with someone who says “I’m looking at line 23” and you can quickly jump to the
same place.

Finally, you can open a specific file by searching for a part of the name by pressing Ctrl+P (cmd+P
on MacOS), which can be quicker than scrolling through the files pane if you have a lot of files.

Productivity hacks 107

Image 12: Opening existing files.

Vim and Emacs key bindings

Once you get hooked on keyboard shortcuts, you might wonder if you ever need to use your mouse
again. Most of the time it only slows you down. Luckily, people thought of this decades ago. Before
mice existed, all text editingwas done using only a keyboard, andmany developers still prefer editors
that were created in this setting over more modern ones.

The two main keyboard-focused text editors are called Vim⁷¹ and Emacs⁷². They both have steep
learning curves (and there’s a long-standing tradition that users of either fiercely argue about which
is superior), but once you’ve put in the time to master them you can get rid of your mouse for good.

If you’ve gotten used to either, you can emulate the experience in Repl.it by switching your keybinds.
Go to the “Settings” tab and scroll down to where you can toggle between “default”, “emacs” and
“vim”.

⁷¹https://www.vim.org/
⁷²https://www.gnu.org/software/emacs/

https://www.vim.org/
https://www.gnu.org/software/emacs/
https://www.vim.org/
https://www.gnu.org/software/emacs/

Productivity hacks 108

Image 13: Setting your keybinds to vim or emacs.

Make it your own

If you want to keep hacking on the PyGame project using your new keyboard prowess, you can
continue from where we left off at https://repl.it/@GarethDwyer1/cwr-10-productivity⁷³.

Where next?

Now that you have mastered the productivity features of Repl.it, you can build proof of concept
applications in no time.

In the next tutorial, we’ll show you how to store data directly in the Repl.it key-value store, one
of the simplest verieties of database. This will cover the so-called “CRUD” (Create, Read, Update,
Delete) operations that are fundamental to any database-backed software.

⁷³https://repl.it/@GarethDwyer1/cwr-10-productivity

https://repl.it/@GarethDwyer1/cwr-10-productivity
https://repl.it/@GarethDwyer1/cwr-10-productivity

Using the Repl.it database

In previous tutorials we used the file system to store data persistently. This works fine for smaller
projects, but there are some limitations to storing data directly in a file system. A more advanced
way to store data which is used by nearly any production application is a database.

Another advantage of storing data in a database instead of in files is that it separates our code and
data cleanly. If we build an application on Repl.it that processes any kind of data, it’s likely that we’ll
want to share the code with other people but not the data. Having our data cleanly separated into a
private database allows us to do exactly this.

In this tutorial, you’ll see how to store data from a Repl.it project directly in the Repl.it key-value
store, one of the simplest varieties of database, similar to a Python dictionary and more scalable.

As a demonstration project, we’ll build a basic phone book application, storing contact information
about friends and family and a command line application to allow users to:

• add new contacts
• search for existing contacts
• update existing contacts
• remove contacts.

This will cover the so-called “CRUD” (Create, Read, Update, Delete) operations that are fundamental
to any database-backed software.

Now create a new Python repl called “phonebook”.

Using the Repl.it database 110

Adding and reading data using the Repl.it database

In the main.py file import the database driver with this code:

1 from replit import db

Databases usually store data on a separate physical server from where your code is running, so
your code needs to know how to find the database and how to authenticate (to prove that you are
authorised to access a specific database to stop other people reading your data).

Usually we would have to supply some kind of credentials for this (e.g. a username and password),
as well as an endpoint to indicate where the database can be found. In this case, Repl.it handles
everything automatically (as long as you are signed in), so you can start storing data straight away.

The db object works very similarly to a global Python dictionary but any data is persistently stored.
You can associate a specific value with a given key in the same way. Add the following to your
main.py file.

1 db["Smith, John"] = "0123456789"

2 print(db["Smith, John"])

You should see the phone number printed to the console, as shown below.

Image 2: Viewing a phone number from the database.

How is this different from a dictionary?

The main difference between using the database and a Python dictionary is that, with the database,
the data is:

• persisted between runs
• kept separate from the code.

For a concrete example, consider storing the same “John Smith” contact in both a dictionary and the
database. Replace the code in your main.py file with the following and run it.

Using the Repl.it database 111

1 from replit import db

2

3 # database

4 db["Smith, John"] = "0123456789"

5 print(db["Smith, John"])

6

7 # dictionary

8 d = {}

9 d["Smith, John"] = "0123456789"

10 print(d["Smith, John"])

Here we store the information first in the database and print it from the database and then in a
dictionary and print it from there. In both cases, we see the result printed and the syntax is exactly
the same.

However, if we comment out the lines where we create the association between key and value, and
run the code again, we’ll see a difference.

1 from replit import db

2

3 # database

4 # db["Smith, John"] = "0123456789"

5 print(db["Smith, John"])

6

7 # dictionary

8 # d = {}

9 # d["Smith, John"] = "0123456789"

10 print(d["Smith, John"])

In this case, the first print still works as the data has persisted in the database. However the dictionary
has been cleared between runs so we get the error NameError: name 'd' is not defined.

Because each Repl.it project has its own unique database which needs a secret key to access, you can
add as much data to your database and still share your project without sharing any of your data.

The database also has some functionality that Python dictionaries do not, such as searching keys by
prefix, which we will take a closer look at soon.

Building a basic phonebook application that can read
and store data

Let’s get started with the application. We’ll build two separate components in parallel, piece by piece:

Using the Repl.it database 112

1. The database logic to create, read, update, and delete contacts.
2. The command line interface to prompt the user to choose what to do, get input, and show

output.

We’ll keep the code that interacts with users in our main.py file and the database logic in a new
module called contacts.py

As we don’t have any contacts yet, we’ll start by allowing our users to add them.

Allowing the user to add contacts to the phonebook

Let’s build the user interaction side first. We need to be able to accept input from the user and show
them prompts and output. Add the following code to main.py:

1 def prompt_add_contact():

2 name = input("Please enter the contact's name: ")

3 number = input("Please enter the contact's phone number: ")

4 print(f"Adding {name} with {number}")

5

6 prompt_add_contact()

This doesn’t actually store the contact anywhere yet, but you can test it out to see how it prompts
the user for input and then displays a confirmation message.

Next we need to add some logic to store this in our database.

Create a new file called contacts.py and add the following code.

1 from replit import db

2

3 def add_contact(name, phone_number):

4 if name in db:

5 print("Name already exists")

6 else:

7 db[name] = phone_number

Because we will use people’s names as keys in our database and because it’s possible that different
people share the same name, it’s possible that our users could overwrite important phone numbers
by adding a new contact with the same name as an existing one. To prevent this, we’ll ensure that
they use a unique name for each contact and only add information with this method to new names.

Back in the main.py file add two lines to import our new module and call the add_contact function.
The new code should look as follows:

Using the Repl.it database 113

1 import contacts

2

3 def prompt_add_contact():

4 name = input("Please enter the contact's name: ")

5 number = input("Please enter the contact's phone number: ")

6 print(f"Adding {name} with {number}")

7 contacts.add_contact(name, number)

8

9 prompt_add_contact()

Test that this works - run it twice and enter the same name both times, with a different phone
number. You should see the confirmation the first time, but the second time it will inform you that
the contact already exists, as shown below.

Image 3: Adding new contacts or showing an error.

Allowing users to retrieve details of stored contacts

Now that we’ve added a contact to our database, let’s allow users to retrieve this information. We
want the user to be able to input a name and get the associated phone number in return. We
can follow a similar pattern to before: adding a function to both our main.py file to handle user
interaction and a separate one to our contacts.py file to handle database interaction.

In main.py add the following function and change the last line to call our new function instead of
the prompt_add_contact() one, as follows:

Using the Repl.it database 114

1 def prompt_get_contact():

2 name = input("Please enter the name to find: ")

3 number = contacts.get_contact(name)

4 if number:

5 print(f"{name}'s number is {number}")

6 else:

7 print(f"It looks like {name} does not exist")

8

9 prompt_get_contact()

Note that this time we call the get_contact function before we write it - we have a blueprint that
works now from our previous example so we can skip some back-and-forth steps.

Add the following function to contacts.py:

1 def get_contact(name):

2 number = db.get(name)

3 return number

Our new code to go into contacts.py is very simple and it might be tempting to just put this logic
directly in the main.py file as it’s so short. However it’s good to stay consistent as each of the files
is likely to grow in length and complexity over time, and it will be easier to maintain our codebase
if our user interaction code is strictly separate from our database interaction code.

Run the code again and input the same name as before. If all went well, you’ll see the number, as in
the example below.

Image 4: Retrieving contacts from user input.

Interlude: Creating a main menu

We now have functionality to add and retrieve contacts, and still need to add:

• searching for names with partial matches
• updating existing contacts (name or number)

Using the Repl.it database 115

• removing contacts.

But before we get started on those problems, we need to allow users to choose what kind of
functionality they want to activate. With a GUI or web application, we could add some menu items
or buttons, but our command line application is driven only by text input and output on a simple
console. Let’s build a main menu that allows users to specify what they want to do.

To make life easier for our users, we’ll let them make choices by inputting a single number that’s
associated with the relevant menu item.

Change your main.py file to look as follows:

1 import contacts

2 from os import system

3

4 main_message = """WELCOME TO PHONEBOOK

5 ----------------------------------

6 Please choose:

7 1 - to add a new contact

8 2 - to find a contact

9 ----------------------------------

10 """

11

12 def prompt_add_contact():

13 name = input("Please enter the contact's name: ")

14 number = input("Please enter the contact's phone number: ")

15 print(f"Adding {name} with {number}")

16 contacts.add_contact(name, number)

17

18 def prompt_get_contact():

19 name = input("Please enter the name to find: ")

20 number = contacts.get_contact(name)

21 if number:

22 print(f"{name}'s number is {number}")

23 else:

24 print(f"It looks like {name} does not exist")

25

26 def main():

27 print(main_message)

28 choice = input("Please make your choice: ").strip()

29 if choice == "1":

30 prompt_add_contact()

31 elif choice == "2":

32 prompt_get_contact()

Using the Repl.it database 116

33 else:

34 print("Invalid input. Please try again.")

35

36 while True:

37 system("clear")

38 main()

39 input("Press enter to continue: ")

This looks like a lot more code than we had before, but if you ignore the multi-line string at the top
and the two functions that we already had, there’s not much more. Our new main() function asks
the users to choose an item from the menu, makes sure that it’s a valid choice, and then calls the
appropriate function.

Below our main() function, we have an infinite loop so that the user can keep using our application
without re-running it after the first action. We call system("clear") between runs to clean up the
old inputs and outputs (and we also added a new import at the top of the file for this).

Extending our search functionality

We already allow users to find contacts by entering their exact name, but it’s useful to be able to do
partial matches too. If our user inputs “Smith” and we have a “Smith, John” and a “Smith, Mary”,
we should be able to show the user both of these contacts.

The Repl.it database has a prefix function that can find all keys that start with a specific string.
Giving “Smi” to this prefix function would match “Smith”, “Smith, John” and “Smith, Mary”, but
not “John Smith”, as it only matches from the start of each key.

You can use this by calling, for example, db.prefix("Smi") which will return all of the keys that
match the “Smi” prefix. Note that this does not return the values (in our case, the phone numbers),
so once we have our matches we still need to look up each phone number individually.

We want our application to prefer finding an exact match if one exists, or gracefully fall back to
returning a list of matches by prefix only if there is no exact match.

Add a new function to contacts.py that can search for contacts and extract each phone number as
follows:

1 def search_contacts(search):

2 match_keys = db.prefix(search)

3 return {k: db[k] for k in match_keys}

And over in main.py modify the prompt_get_contacts() function to call this if necessary (when
there is no exact match) as follows:

Using the Repl.it database 117

1 def prompt_get_contact():

2 name = input("Please enter the name to find: ")

3 number = contacts.get_contact(name)

4 if number:

5 print(f"{name}'s number is {number}")

6 else:

7 matches = contacts.search_contacts(name)

8 if matches:

9 for k in matches:

10 print(f"{k}'s number is {matches[k]}")

11 else:

12 print(f"It looks like {name} does not exist")

Run the code again and choose to add a contact. Enter “Smith, Mary” when prompted and any phone
number. When the program starts over, choose to find a contact and input “Smi”. It should print out
both “Smith” matches that we have, as shown below.

Image 5: The user menu: They can now choose what action to do.

Allowing users to update contacts

There are two ways that users might want to update contacts. They should be able to:

1. Change the name of a contact but keep the same phone number
2. Change the phone number of a contact but keep the same name

Because we are storing contacts as keys and values, to do 1) we need to create a new contact and
remove the original one, while for 2) we can simply update the value of the existing key.

We can handle both cases with a single prompt by allowing the user to leave either field blank, in
this case preserving the old value. Add the following function to your main.py file.

Using the Repl.it database 118

1 def prompt_update_contact():

2 old_name = input("Please enter the name of the contact to update: ")

3 old_number = contacts.get_contact(old_name)

4 if old_number:

5 new_name = input(f"Please enter the new name for this contact (leave blank t\

6 o keep {old_name}): ").strip()

7 new_number = input(f"Please enter the new number for this contact (leave bla\

8 nk to keep {old_number}): ").strip()

9

10 if not new_number:

11 new_number = old_number

12

13 if not new_name:

14 contacts.update_number(old_name, new_number)

15 else:

16 contacts.update_contact(old_name, new_name, new_number)

17

18 else:

19 print(f"It looks like {old_name} does not exist")

This uses two functions in our contacts.py file that don’t exist yet. These are:

• update_number to keep the contact but change the phone number
• update_contact to update the name (and maybe also the number) by removing the old contact
and creating a new one.

Create these two functions in contacts.py as follows.

1 def update_number(old_name, new_number):

2 db[old_name] = new_number

3

4 def update_contact(old_name, new_name, new_number):

5 db[new_name] = new_number

6 del db[old_name]

Note how we can use the del Python keyword to remove things from our database. We’ll use this
again in the next section.

Now we need to allow users to choose “update” as an option from the menu. In the main.py file, add
a new line to the menu prompt to inform our users about the option and update the main() function
to call the new update function when appropriate, as follows:

Using the Repl.it database 119

1 main_message = """WELCOME TO PHONEBOOK

2 ----------------------------------

3 Please choose:

4 1 - to add a new contact

5 2 - to find a contact

6 3 - to update a contact

7 ----------------------------------

8 """

9 # ...

1 def main():

2 print(main_message)

3 choice = input("Please make your choice: ").strip()

4 if choice == "1":

5 prompt_add_contact()

6 elif choice == "2":

7 prompt_get_contact()

8 elif choice == "3":

9 prompt_update_contact()

10 else:

11 print("Invalid input. Please try again.")

Test it out! Change someone’s name, someone else’s number, and then update both the name and
the number at once.

Allowing users to remove contacts

Sometimes there are people we just don’t want to talk to any more. We’ve already seen how to
remove contacts by updating their key and removing the old one, but let’s allow for removals without
updates too. By now, you should be familiar with the parts of the code that you need to update. To
recap, these are:

• adding a new prompt_* function to the main.py file
• adding a new *_contact function to contacts.py

• adding a new line to the menu prompt in main.py

• adding a new elif block to the main() function in main.py.

These are each shown in turn below.

Using the Repl.it database 120

1 def prompt_delete_contact():

2 name = input("Please enter the name to delete: ")

3 contact = contacts.get_contact(name)

4 if contact:

5 print(f"Deleting {name}")

6 contacts.delete_contact(name)

7 else:

8 print(f"It looks like {name} does not exist")

1 def delete_contact(name):

2 del db[name]

1 main_message = """WELCOME TO PHONEBOOK

2 ----------------------------------

3 Please choose:

4 1 - to add a new contact

5 2 - to find a contact

6 3 - to update a contact

7 4 - to delete a contact

8 ----------------------------------

9 """

1 def main():

2 print(main_message)

3 choice = input("Please make your choice: ").strip()

4 if choice == "1":

5 prompt_add_contact()

6 elif choice == "2":

7 prompt_get_contact()

8 elif choice == "3":

9 prompt_update_contact()

10 elif choice == "4":

11 prompt_delete_contact()

12 else:

13 print("Invalid input. Please try again.")

It may be a bit inconvenient to type out the whole name of a contact that you want to delete, but it’s
usually acceptable to make “dangerous” operations less user friendly. As there is no way to recover
contacts, it’s good to make it a bit more difficult to delete them. Maybe our user will change their
mind while typing out the name of an old friend to delete the record and reach out instead :).

Using the Repl.it database 121

Make it your own

If you’ve followed along, you’ll have your own version of the repl to extend. Otherwise start from
ours at https://repl.it/@GarethDwyer1/cwr-11-phonebook⁷⁴.

Where next

You’ve learned how basic databases work. Databases are a complicated topic on their own and it
can take years or decades to master the more advanced aspects of them, but they can also do more
than the simple operations that we’ve covered here. Spend some time reading about PostgreSQL⁷⁵
and relational databases⁷⁶ in general, or other key-value stores⁷⁷ like the Repl.it database.

Even without further research, the basic Create, Read, Update, and Delete (CRUD) operations that
we covered here will get you far and you can build nearly any app you can imagine with just these.

Next we’ll take a look at playing audio files programmatically so you can use Python to control your
music.

⁷⁴https://repl.it/@GarethDwyer1/cwr-11-phonebook
⁷⁵https://www.postgresql.org/
⁷⁶https://en.wikipedia.org/wiki/Relational_database
⁷⁷https://en.wikipedia.org/wiki/Key%E2%80%93value_database

https://repl.it/@GarethDwyer1/cwr-11-phonebook
https://www.postgresql.org/
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Key%E2%80%93value_database
https://repl.it/@GarethDwyer1/cwr-11-phonebook
https://www.postgresql.org/
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Key%E2%80%93value_database

Repl.it Audio

Most people control their music players manually, pressing the pause button to pause a track
or hitting a volume up control to raise the volume. With Repl.it, you can automate your media
experience using code.

In this tutorial, we’ll build a media player that can play audio files programmatically, allowing the
user to pause playback, change the track, change the volume, or get looping information by giving
text commands.

We’ll also outline how this could be integrated into other applications, such as a chatbot, but we’ll
leave the implementation of that as an exercise for the reader.

Understanding how audio works on Repl.it

In Unix systems, including the ones that Repl.it is built on, everything is a file⁷⁸. You might think
of file types like PDFs, text files, image files or audio files, but in fact even things like printers are
often “seen” as files by the underlying operating system.

Repl.it uses a special file at /tmp/audio to control media output. There are more details on how
to manipulate this file directly in the audio docs⁷⁹, but Repl.it also provides a higher level Python
library that gives us some higher level functions like “play_audio”. We’ll be using the library in this
tutorial.

⁷⁸https://en.wikipedia.org/wiki/Everything_is_a_file
⁷⁹https://docs.repl.it/repls/audio

https://en.wikipedia.org/wiki/Everything_is_a_file
https://docs.repl.it/repls/audio
https://en.wikipedia.org/wiki/Everything_is_a_file
https://docs.repl.it/repls/audio

Repl.it Audio 123

Getting a free audio file from the Free Music Archive

You can use your own mp3 files if you prefer, but as most music is under copy protection, we’ll use
a file from the Free Music Arhive⁸⁰ for demo purposes.

Let’s grab the URL of a file we want so that we can use code to download it to our Repl.it project.

Search for a song that you like, right-click on the download link and press “copy link location”, as
shown below.

Image 2: Downloading an audio track

Downloading audio files to our project

Our first goal is to download the song and play it.

Create a new Python repl called audio and add the following code to the main.py file.

⁸⁰https://freemusicarchive.org/search

https://freemusicarchive.org/search
https://freemusicarchive.org/search

Repl.it Audio 124

1 import requests

2

3 url = " https://files.freemusicarchive.org/storage-freemusicarchive-org/music/Oddio_\

4 Overplay/MIT_Concert_Choir/Carmina_Burana/MIT_Concert_Choir_-_01_-_O_Fortuna.mp3"

5

6 r = requests.get(url)

7 with open("o_fortuna.mp3", "wb") as f:

8 f.write(r.content)

Change the URL to the one you chose and o_fortuna.mp3 to something more appropriate if you
chose a different song.

This downloads the song, opens up a binary file, and writes the contents of the download to the file.
You should see the new file pop up in the files tab on the left after you run this code.

Image 3: Viewing the downloaded audio file in your files tab.

Instead of downloading the audio file using requests as shown above, you can also press the add

file button in your repl and upload an audio file from your local machine.

Playing the audio file using Python

Now that we have the file we can play it by importing the audio module and calling the play_file
method. Replace the code in main.py with the following:

Repl.it Audio 125

1 from replit import audio

2 import time

3

4 audio.play_file("o_fortuna.mp3")

5 time.sleep(10)

Note that your repl usually dies the moment there is no more code to execute, and playing audio
doesn’t keep it alive. For now, we are sleeping for 10 seconds which keeps the repl alive and the
audio playing. If you run this, you should hear the first 10 seconds of the track before it cuts out.

It’s not ideal to keep the execution loop locked up in a sleep() call as we can’t interact with our
program so we can’t control the playback in any way.

To keep the music playing until the user presses a key, change the last line to:

1 choice = input("Press enter to stop the music. ")

Now the program is blocked waiting for user input and the music will keep playing until the user
enters something.

Let’s add some more useful controls.

Allowing the user to pause, change volume, or get
information about the currently playing track

The controls we add next are based around:

• source.volume: an attribute that we can add to or subtract from to increase or decrease the
volume

• source.paused: an attribute we can change to True or False to pause or unpause the track
• source.set_loop(): a methodwe can call to specify howmany times a track should loop before
ending

We can also display useful information about the current status of our media player by looking at:

• source.loops_remaining: an attribute to see how many more time a track will loop
• source.get_remaining(): a method to see the remaining playtime for the current track.

We’ll allow the user to see the current information but for simplicity we’ll only update this on each
input, so our display will often display ‘out of date’ information.

Creating the prompt menu

Remove the code in main.py and replace it with the following.

Repl.it Audio 126

1 import time

2 from os import system

3 from replit import audio

4

5 main_message = """

6 +: volume up

7 -: volume down

8 k: add loop

9 j: remove loop

10 <space>: play/pause

11 """

Here we add one more import for system which we’ll use to clear the screen so that the user doesn’t
see old information. We then define a string that will prompt the user with their options.

Creating the show_status() method

Let’s add a method that will show the user the current status of our media player. It will take source
as an input, which is what the play_media() method that we already used returns.

1 def show_status(source):

2 time.sleep(0.2)

3 system("clear")

4 vbar = '|' * int(source.volume * 20)

5 vperc = int(source.volume * 100)

6 pp = "� " if source.paused else "� "

7

8 print(f"Volume: {vbar} {vperc}% \n")

9 print(f"Looping {source.loops_remaining} time(s)")

10 print(f"Time remaining: {source.get_remaining()}")

11 print(f"Playing: {pp}")

12 print(main_message)

Note that we add a time.sleep() at the top of this function. Because changing the status involves
writing to the /tmp/audio file we discussed before and reading the status involves reading from this
file, we want to wait a short while to ensure we don’t read stale information before showing it to
the user.

Otherwise our function clears the screen, prints out a text-based volume bar along with the current
volume percentage, and shows other information such as whether the track is currently playing or
paused, how many loops are left, and how much time is left before the track finishes.

Finally, we need a loop to constantly prompt the user for the next command which will also keep
our repl alive and continue playing the track while we are waiting for user input. Add the following
main() function to main.py and call it:

Repl.it Audio 127

1 def main():

2 source = audio.play_file("o_fortuna.mp3")

3 time.sleep(1)

4 show_status(source)

5

6 while True:

7 choice = input("Enter command: ")

8 if choice == '+':

9 source.volume += 0.1

10 elif choice == '-':

11 source.volume -= 0.1

12 elif choice == "k":

13 source.set_loop(source.loops_remaining + 1)

14 elif choice == "j":

15 source.set_loop(source.loops_remaining - 1)

16 elif choice == " ":

17 source.paused = not source.paused

18 show_status(source)

19

20 main()

Once again, you should replace the “o_fortuna” string if you downloaded or uploaded a different
audio file.

If you run the repl now you should hear you track play and you can control it by inputting the
various commands.

Image 4: A preview of our audio status dashboard.

Repl.it Audio 128

Playing individual tones

Instead of playing audio from files, you can also play specific tones or notes with the play_tone()
method. This method takes three arguments:

• duration: how long the tone should play for
• pitch: the frequency of the tone (how high or low it sounds)
• wave form: the fundamental wave form⁸¹ that the tone is built on.

If you’ve ever played a musical instrument, you’ll probably have come across notes referred to by
the letters A-G. With digital audio, you’ll specify the pitch in hertz (Hz). “Middle C” on a piano is
usually 262 Hz and the A above this is 440 Hz.

Let’s write a program to play “Twinkle Twinkle Little Star”. Create a new Python repl and add the
following code to main.py.

1 import time

2 from replit import audio

3

4 def play_note(note, duration):

5 note_to_freq = {

6 "C": 262, "D": 294, "E": 330, "F": 349, "G": 392, "A": 440

7 }

8 audio.play_tone(duration, note_to_freq[note], 0)

9 time.sleep(duration)

10

11 play_note("C", 2)

Above we set up a convenience function to play specific notes for a specific duration. It includes
a dictionary mapping the names of notes to their frequencies. We’ve only done one octave and no
sharps or flats, but you can easily extend this to add the other notes.

It then plays the tone of the note passed in for the specified duration. We sleep for that duration
too, as othewise the next note will be played before the previous note is finished. We also pass a 0

to play_tone which specifies the default sine waveform. You can change it to 1, 2, or 3 for triangle,
saw, or square, which you can read about in more detail⁸².

Test that you can play a single note as expected. Now you can play the first part of “Twinkle Twinkle
Little Star” by defining all of the notes and durations, and then looping through them, calling play_-
note on each in turn.

⁸¹https://www.perfectcircuit.com/signal/difference-between-waveforms
⁸²https://www.perfectcircuit.com/signal/difference-between-waveforms

https://www.perfectcircuit.com/signal/difference-between-waveforms
https://www.perfectcircuit.com/signal/difference-between-waveforms
https://www.perfectcircuit.com/signal/difference-between-waveforms
https://www.perfectcircuit.com/signal/difference-between-waveforms

Repl.it Audio 129

1 notes = ["C", "C", "G", "G", "A", "A", "G", "F", "F", "E", "E", "D", "D", "C"]

2 durations = [2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4]

3

4 for i in range(len(notes)):

5 play_note(notes[i], durations[i])

We can also control the volume of each tone by passing a volume argument to play_tone(). As for
audio files, this is a float where 1 represents 100% volume. If we wanted to implement a decrescendo
(gradual decrease in volume), we could modify our code to look as follows:

1 def play_note(note, duration, volume=1):

2 note_to_freq = {

3 "C": 262, "D": 294, "E": 330, "F": 349, "G": 392, "A": 440

4 }

5 audio.play_tone(duration, note_to_freq[note], 0, volume=volume)

6 time.sleep(duration)

7

8

9 notes = ["C", "C", "G", "G", "A", "A", "G", "F", "F", "E", "E", "D", "D", "C"]

10 durations = [2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4]

11

12 volume = 1

13 for i in range(len(notes)):

14 volume -= 0.05

15 play_note(notes[i], durations[i], volume=volume)

Here we added a volume argument to our play_note() function so that we can pass it along to
play_tone(). Each time around the loop we reduce the volume by 5%. Play it again and you should
hear the song slowly fade out (if you add more than 20 notes, the volume will hit 0 so you’ll have
to reduce the step or increase the volume at some point to stop the song going silent).

Make it your own

If you followed along you’ll have your own version to extend, otherwise you can fork our media
player repl at https://repl.it/@GarethDwyer1/cwr-12-audio-player.⁸³

The “Twinkle Twinkle Little Star” repl can be found at https://repl.it/@GarethDwyer1/cwr-12-audio-
twinkle-twinkle⁸⁴.

⁸³https://repl.it/@GarethDwyer1/cwr-12-audio-player.
⁸⁴https://repl.it/@GarethDwyer1/cwr-12-audio-twinkle-twinkle

https://repl.it/@GarethDwyer1/cwr-12-audio-player.
https://repl.it/@GarethDwyer1/cwr-12-audio-twinkle-twinkle
https://repl.it/@GarethDwyer1/cwr-12-audio-twinkle-twinkle
https://repl.it/@GarethDwyer1/cwr-12-audio-player.
https://repl.it/@GarethDwyer1/cwr-12-audio-twinkle-twinkle

Repl.it Audio 130

Where next

Controlling your audio files through a text-based interface might feel like a downgrade from using
a GUI media player, but you can use these concepts to integrate audio controls into your other
applications. For example, you could create a Discord chatbot⁸⁵ that plays different tracks and
automatically pauses or reduces the volume of your music when you join a Discord voice channel.
Or you could integrate audio tracks into a web application or game (e.g. playing a victory or defeat
sound at a specific volume given certain conditions).

Once you can control something using code, the possibilities are pretty broad, so use your
imagination!

You’ve reached the end of this collection of tutorials that teach you the ins and outs of Repl.it, and
you should be able to build any project that you can imagine now.

If you’re stuck for ideas, continue on to Part 3 where we’ll walk you through eight practical projects,
focusing more on coding concepts than Repl.it features.

⁸⁵https://ritza.co/showcase/repl.it/building-a-discord-bot-with-python-and-repl-it.html

https://ritza.co/showcase/repl.it/building-a-discord-bot-with-python-and-repl-it.html
https://ritza.co/showcase/repl.it/building-a-discord-bot-with-python-and-repl-it.html

Beginner web scraping with Python
and Repl.it
In this guide, we’ll walk through how to grab data from web sites automatically. Most websites are
created with a human audience in mind - you use a search engine or type a URL into your web
browser, and see information displayed on the page. Sometimes, we might want to automatically
extract and process this data, and this is where web scraping can save us from boring repetitive
labour. We can create a custom computer program to visit web sites, extract specific data and process
this data in a particular way.

We’ll be extracting news data from the bbc.com⁸⁶ news website, but you should be able to adapt it
to extract information from any website that you want with a bit of trial and error.

There are many reasons you might wish to use web scraping. For example, you might need to:

• extract numbers from a report that is released weekly and published online
• grab the schedule for your favourite sports team as it’s released
• find the release dates for upcoming movies in your favourite genre
• be notified automatically when a website changes

There are many other use cases for web scraping. However, you should also note that copyright
law and web scraping laws are complex and differ by country. As long as you aren’t blatantly
copying their content or doing web scraping for commercial gain, people generally don’t mind web
scaping. However, there have been some legal cases involving scraping data from LinkedIn⁸⁷ and
media attention from scraping data from OKCupid⁸⁸. Web scraping can violate the law, go against
a particular website’s terms of service, or breach ethical guidelines - so take care with where you
apply this skill.

With the disclaimer out of the way, let’s learn how to scrape!

Overview and requirements

Specifically, in this tutorial we’ll cover:

• What a website really is and how HTML works

⁸⁶https://bbc.com/news
⁸⁷https://techcrunch.com/2016/08/15/linkedin-sues-scrapers/
⁸⁸https://www.engadget.com/2016/05/13/scientists-release-personal-data-for-70-000-okcupid-profiles/

https://bbc.com/news
https://techcrunch.com/2016/08/15/linkedin-sues-scrapers/
https://www.engadget.com/2016/05/13/scientists-release-personal-data-for-70-000-okcupid-profiles/
https://bbc.com/news
https://techcrunch.com/2016/08/15/linkedin-sues-scrapers/
https://www.engadget.com/2016/05/13/scientists-release-personal-data-for-70-000-okcupid-profiles/

Beginner web scraping with Python and Repl.it 132

• Viewing HTML in your web browser
• Using Python to download web pages
• Using BeautifulSoup⁸⁹ to extract parts of scraped data

We’ll be using the online programming environment Repl.it⁹⁰ so you won’t need to install any
software locally to follow along step by step. If you want to adapt this guide to your own needs,
you should create a free account by going to repl.it⁹¹ and follow their sign up process.

It would help if you have basic familiarity with Python or another high-level programming language,
but we’ll be explaining each line of code we write in detail so you should be able to keep up, or at
least replicate the result, even if you don’t.

Webpages: beauty and the beast

You have no doubt visited web pages using a web browser before. Websites exist in two forms:

1. The one you are used to, where you can see text, images, and other media. Different fonts, sizes,
and colours are used to display information in a useful and (usually) aesthetic way.

2. The “source” of the webpage. This is the computer code that tells your web browser (e.g. Mozilla
Firefox or Google Chrome) what to display and how to display it.

Websites are created through a combination of three computer languages: HTML, CSS and JavaScript.
This in itself is a huge and complicated field with a messy history, but having a basic understanding
of how some of it works is necessary to automate web scraping effectively. If you open any website
in your browser and right-click somewhere on the page, you’ll see a menu which should include
an option to “view page source” – to inspect the code form of a website, before your web browser
interprets it.

This is shown in the image below: a normal web page on the left, with an open menu (displayed
by right-clicking on the page). Clicking “view page source” on this menu produces the result on
the right – we can see the code that contains all the data and supporting information that the web
browser needs to display the complete page. While the page on the left is easy to read, use, and looks
good, the one on the right is a monstrosity. It takes some effort and experience to make any sense of
it, but it’s possible and necessary if we want to write custom web scrapers.

⁸⁹https://www.crummy.com/software/BeautifulSoup/
⁹⁰https://repl.it
⁹¹https://repl.it

https://www.crummy.com/software/BeautifulSoup/
https://repl.it/
https://repl.it/
https://www.crummy.com/software/BeautifulSoup/
https://repl.it/
https://repl.it/

Beginner web scraping with Python and Repl.it 133

Image 1: Normal and source view of the same BBC news article.

Navigating the source code using Find

The first thing to do is to work out how the two pages correspond: which parts of the normally
displayed website match up to which parts of the code. You can use “find” Ctrl + F) in the source
code view to find specific pieces of text that are visible in the normal view to help with this. In the
web page on the left, we can see that the story starts with the phrase “Getting a TV job”. If we search
for this phrase in the code view, we can find the corresponding text within the code, on line 805.

Beginner web scraping with Python and Repl.it 134

Image 2: Finding text in the source code of a web page.

The <p class="story-body__introduction"> just before the highlighted section is HTML code to
specify that a paragraph (<p> in HTML) starts here and that this is a special kind of paragraph (an
introduction to the story). The paragraph continues until the </p> symbol. You don’t need to worry
about understanding HTML completely, but you should be aware that it contains both the text data
that makes up the news article and additional data about how to display it.

A large part of web scraping is viewing pages like this to a) identify the data that we are interested
in and b) to separate this from the markup and other code that it is mixed with. Even before we start
writing our own code, it can still be tricky first to understand other people’s.

In most pages, there is a lot of code to define the structure, layout, interactivity, and other
functionality of a web page, and relatively little that contains the actual text and images that we
usually view. For especially complex pages it can be quite difficult, even with the help of the find
function, to locate the code that is responsible for a particular part of the page. For this reason, most
web browsers come with so-called “developer tools”, which are aimed primarily at programmers to
assist in the creation and maintenance of web sites, though these tools are also handy for doing web
scraping.

Navigating the source code using developer tools

You can open the developer tools for your browser from the main menu, with Google Chrome shown
on the left andMozilla Firefox on the right below. If you’re using a different web browser, you should
be able to find a similar setting.

Beginner web scraping with Python and Repl.it 135

** Image 3:** Opening Developer Tools in Chrome (left) and Firefox (right)

Activating the tool brings up a new panel in your web browser, usually at the bottom or on the
right-hand side. The tool contains an “Inspector” panel and a selector tool, which can be chosen by
pressing the icon highlighted in red below. Once the selector tool is active, you can click on parts
of the web page to view the corresponding source code. In the image below, we selected the same
first paragraph in the normal view and we can see the <p class=story-body__introduction"> code
again in the panel below.

Beginner web scraping with Python and Repl.it 136

Image 4: Viewing the code for a specific element using developer tools

The Developer Tools are significantly more powerful than using the simple find tool, but they are
also more complicated. You should choose a method based on your experience and the complexity
of the page that you are trying to analyze.

Downloading a web page with Python

Now that we’ve seen a bit more of how web pages are built in our browser, we can start retrieving
and manipulating them using Python. Since Python is not a web browser, we’ll only be able to
retrieve and manipulate the HTML source code, rather than viewing the ‘normal’ representation of
a web page.

We’ll do this through a Python Repl using the requests library. Open repl.it⁹² and choose to create
a new Python Repl.

⁹²https://repl.it

https://repl.it/
https://repl.it/

Beginner web scraping with Python and Repl.it 137

Image 5: Create new Repl

This will take you to a working Python coding environment where you can write and run Python
code. To start with, we’ll download the content from the BBC News homepage, and print out the
first 1000 characters of HTML source code.

You can do this with the following four lines of Python:

1 import requests

2

3 url = "https://bbc.com/news"

4 response = requests.get(url)

5 print(response.text[:1000])

Put this code in the main.py file that Repl automatically creates for you and press the “Run” button.
After a short delay, you should see the output in the output pane - the beginning of HTML source
code, similar to what we viewed in our web browser above.

Beginner web scraping with Python and Repl.it 138

Image 6: Downloading a single page using Python

Let’s pull apart each of these lines.

• In line 1, we import the Python requests library, which is a library that allows us to make web
requests.

• In line 3, we define a variable containing the URL of the main BBC news site. You can visit this
URL in your web browser to see the BBC News home page.

• In line 4, we pass the URL we defined to the requests.get function, which will visit the web
page that the URL points to and fetch the HTML source code. We load this into a new variable
called response.

• In line 5, we access the text attribute of our response object, which contains all of the HTML
source code. We take only the first 1000 characters of this, and pass them to the print function,
which simply dumps the resulting text to our output pane.

We have now automatically retrieved a web page and we can display parts of the content. We are
unlikely to be interested in the full source code dump of a web page (unless we are storing it for
archival reasons), so let’s extract some interesting parts of the page, instead of only the first 1000
characters.

Using BeautifulSoup to extract all URLs

The world wide web is built from pages that link to each other using hyperlinks, links, or URLs.
(These terms are all used more-or-less interchangeably).

Beginner web scraping with Python and Repl.it 139

Let’s assume for now that we want to find all the news articles on the BBC News homepage, and get
their URLs. If we look at the main page below, we’ll see there are a bunch of stories on the home page.
By mousing over any of the headlines with the “inspect” tool, we can see that each has a unique
URL which takes us to that news story. For example, mousing over the main “US and Canada agree
new trade deal” story in the image below is a link to https://www.bbc.com/news/business-45702609.

If we inspect that element using the browser’s developer tools, we can see it is a <a> element,
which is HTML for a link, with an <href> component that points to the URL. Note that the href

section goes only to the last part of the URL, omitting the https://www.bbc.com part. Because we
are already on BBC, the site can use relative URLs instead of absolute URLs. This means that when
you click on the link, your browser will figure out that the URL isn’t complete and prepend it with
https://www.bbc.com. If you look around the source code of the main BBC page, you’ll find both
relative and absolute URLs, which already makes scraping all of the URLs on the page more difficult.

Image 7: Viewing headline links using Developer Tools.

We could try to use Python’s built-in text search functions like find() or regular expressions to
extract all of the URLs from the BBC page, yet it is not actually possible to do this reliably. HTML is
a complex language which allows web developers to do many unusual things. For an amusing take
on why we should avoid a “naive” method of looking for links, see this very famous⁹³ StackOverflow
question and the first answer.

Luckily, there is a powerful and simple-to-use HTML parsing library called BeautifulSoup⁹⁴, which
will help us extract all the links from a given piece of HTML. We can use it by modifying the code

⁹³https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags
⁹⁴https://www.crummy.com/software/BeautifulSoup/

https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags
https://www.crummy.com/software/BeautifulSoup/
https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags
https://www.crummy.com/software/BeautifulSoup/

Beginner web scraping with Python and Repl.it 140

in our Repl to look as follows.

1 import requests

2 from bs4 import BeautifulSoup

3

4 url = "https://bbc.com/news"

5

6 response = requests.get(url)

7 html = response.text

8

9 soup = BeautifulSoup(html, "html.parser")

10 links = soup.findAll("a")

11 for link in links:

12 print(link.get("href"))

If you run this code, you’ll see that it outputs dozens of URLs, one per line. You’ll probably notice
that the code now takes quite a bit longer to run than before – BeautifulSoup is not built into Python,
it is a third-party module. This means that before running the code, Repl has to go and fetch this
library and install it for you. Subsequent runs will be faster.

Image 8: Extracting all links from BBC News.

The code is similar to what we had before with a few additions.

• In line 2, we import the BeautifulSoup library, which is used for parsing and processing HTML.

Beginner web scraping with Python and Repl.it 141

• One line 9, we transform our HTML into “soup”. This is BeautifulSoup’s representation of a
web page, which contains a bunch of useful programmatic features to search and modify the
data in the page. We use the “html.parser” option to parse HTML which is included by default
– BeautifulSoup also allows you specify a custom HTML parser here. For example, you could
install and specify a faster parser which can be useful if you need to process a lot of HTML
data.

• In line 10, we find all the a elements in our HTML and extract them to a list. Remember, when
we were looking at the URLs using our web browser (Image 7), we noted that the <a> element
in HTML was used to define links, with the href attribute being used to specify where the link
should go to. This line finds all of the HTML <a> elements.

• In line 11, we loop through all of the links we have, and in line 12 we print out the href section.

These last two lines show why BeautifulSoup is useful. To try and find and extract these elements
without it would be remarkably difficult, but now we can do it in two lines of readable code!

If we look at the URLs in the output pane, we’ll see quite a mixed bag of results. We have absolute
URLs (starting with “http”) and relative ones (starting with “/”). Most of them go to general pages
rather than specific news articles. We need to find a pattern in the links we’re interested in (that go
to news articles) so that we can extract only those.

Again, trial and error is the best way to do this. If we go to the BBC News home page and
use developer tools to inspect the links that go to news articles, we’ll find that they all have a
similar pattern. They are relative URLs which start with “/news” and end with a long number, e.g.
/news/newsbeat-45705989

We can make a small change to our code to only output URLs that match this pattern. Replace the
last two lines of our Python code with the following four lines:

1 for link in links:

2 href = link.get("href")

3 if href.startswith("/news") and href[-1].isdigit():

4 print(href)

Here we still loop through all of the links that BeautifulSoup found for us, but now we extract the
href to its own variable immediately after. We then inspect this variable to make sure that it matches
our conditions (starts with “/news” and ends with a digit), and only if it does, then we print it out.

Beginner web scraping with Python and Repl.it 142

Image 9: Printing only links to news articles from BBC.

Fetching all of the articles from the homepage

Now that we have the link to every article on the BBC News homepage, we can fetch the data for
each one of these individual articles. As a toy project, let’s extract the proper nouns (people, places,
etc) from each article and print out the most common ones to get a sense on what things are being
talked about today.

Adapt your code to look as follows:

1 import requests

2 import string

3

4 from collections import Counter

5

6 from bs4 import BeautifulSoup

7

8

9 url = "https://bbc.com/news"

10

11

12 response = requests.get(url)

13 html = response.text

Beginner web scraping with Python and Repl.it 143

14 soup = BeautifulSoup(html, "html.parser")

15 links = soup.findAll("a")

16

17 news_urls = []

18 for link in links:

19 href = link.get("href")

20 if href.startswith("/news") and href[-1].isdigit():

21 news_url = "https://bbc.com" + href

22 news_urls.append(news_url)

23

24

25 all_nouns = []

26 for url in news_urls[:10]:

27 print("Fetching {}".format(url))

28 response = requests.get(url)

29 html = response.text

30 soup = BeautifulSoup(html, "html.parser")

31

32 words = soup.text.split()

33 nouns = [word for word in words if word.isalpha() and word[0] in string.ascii_up\

34 percase]

35 all_nouns += nouns

36

37 print(Counter(all_nouns).most_common(100))

This code is quite a bit more complicated than what we previously wrote, so don’t worry if you
don’t understand all of it. The main changes are:

• At the top, we add two new imports in addition to the requests library. The first new module
is one for string, which is a standard Python module that contains some useful word and letter
shortcuts. We’ll use it to identify all the capital letters in our alphabet. The second module is
a Counter, which is part of the built-in collections module. This will let us find the most
common nouns in a list, once we have built a list of all the nouns.

• We’ve added news_urls = [] at the top of the first for loop. Instead of printing out each URL
once we’ve identified it as a “news URL”, we add it to this list so we can download each page
later. Inside the for loop two lines down, we combine the root domain (“http://bbc.com”) with
each href attribute and then add the complete URL to our news_urls list.

• We then go into another for loop, where we loop through the first 10 news URLs (if you
have more time, you can remove the [:10] part to iterate through all the news pages, but
for efficiency, we’ll just demonstrate with the first 10).

• We print out the URL that we’re fetching (as it takes a second or so to download each page, it’s
nice to display some feedback so we can see that the program is working).

• We then fetch the page and turn it into soup, as we did before.

Beginner web scraping with Python and Repl.it 144

• With words = soup.text.split() we extract all the text from the page and split this resulting
big body of text into individual words. The Python split() function splits on white space,
which is a crude way to extract words from a piece of text, but it will serve our purpose for
now.

• The next line loops through all the words in that given article and keeps only the ones that are
made up of numeric characters and which start with a capital letter (string.ascii_uppercase
is just the uppercase alphabet). This is also an extremely crude way of extracting nouns, and
we will get a lot of words (like those at the start of sentences) which are not actually proper
nouns, but again it’s a good enough approximation for now.

• We then add all the words that look like nouns to our all_nouns list and move on to the next
article to do the same.

• Finally, once we’ve downloaded all the pages, we print out the 100 most common nouns along
with a count of how often they appeared using Python’s convenient Counter object.

You should see output similar to that in the image below (though your words will be different, as
the news changes every few hours). We have the most common “nouns” followed by a count of how
often that noun appeared in all 10 of the articles we looked at.

We can see that our crude extraction and parsing methods are far from perfect – words like “Twitter”
and “Facebook” appear in most articles because of the social media links at the bottom of each article,
so their presence doesn’t mean that Facebook and Twitter themselves are in the news today. Similarly,
words like “From” aren’t nouns, and other words like “BBC” and “Business” are also included because
they appear on each page, outside of the main article text.

Image: 10 The final output of our program, showing the words that appear most often in BBC articles.

Beginner web scraping with Python and Repl.it 145

Where next?

We’ve completed the basics of web scraping and have looked at how the web works, how to
extract information from web pages, and how to do some very basic text extraction. You will
probably want to do something other than extract words from BBC! You can fork this Repl from
https://repl.it/@GarethDwyer1/beginnerwebscraping and modify it to change which site it scrapes
andwhat content it extracts. You can also join the Repl Discord Server⁹⁵ to chat with other developers
who are working on similar projects and who will happily exchange ideas with you or help if you
get stuck.

We have walked through a very flexible method of web scraping, but it’s the “quick and dirty” way.
If BBC updates their website and some of our assumptions (e.g. that news URLs will end with a
number) break, our web scraper will also break.

Once you’ve done a bit of web scraping, you’ll notice that the same patterns and problems come
up again and again. Because of this, there are many frameworks and other tools that solve these
common problems (finding all the URLs on the page, extracting text from the other code, dealing
with changing web sites, etc), and for any big web scraping project, you’ll definitely want to use
these instead of starting from scratch.

Some of the best Python web scraping tools are:

• Scrapy⁹⁶: A framework used by people who want to scrape millions or even billions of web
pages. Scrapy lets you build “spiders” – programmatic robots that move around the web at high
speed, gathering data based on rules that you specify.

• Newspaper⁹⁷: we touched on how it was difficult to separate the main text of an online news
article from all the other content on the page (headers, footers, adverts, etc). This problem is
an incredibly difficult one to solve. Newspaper uses a combination of manually specified rules
and some clever algorithms to remove the “boilerplate” or non-core text from each article.

• Selenium⁹⁸: we scraped some basic content without using a web browser, and this works fine
for images and text. Many parts of the modern web are dynamic though – e.g. they only load
when you scroll down a page far enough or click on a button to reveal more content. These
dynamic sites are challenging to scrape, but Selenium allows you to fire up a real web browser
and control it just as a human would (but automatically), and this allows you to access this
kind of dynamic content.

There is no shortage of other tools, and a lot can be done simply by using them in combination with
each other. Web scraping is a vast world that we’ve only just touched on, but we’ll explore some
more web scraping use cases in the next chapter, in particular, building news word clouds.

⁹⁵https://discord.com/login?redirect_to=%2Fchannels%2F%40me
⁹⁶https://scrapy.org/
⁹⁷https://github.com/codelucas/newspaper
⁹⁸https://www.seleniumhq.org/

https://discord.com/login?redirect_to=/channels/@me
https://scrapy.org/
https://github.com/codelucas/newspaper
https://www.seleniumhq.org/
https://discord.com/login?redirect_to=/channels/@me
https://scrapy.org/
https://github.com/codelucas/newspaper
https://www.seleniumhq.org/

Building news word clouds using
Python and Repl.it
Word clouds, which are images showing scattered words in different sizes, are a popular way to
visualise large amounts of text. Words that appear more frequently in the given text are larger, and
less common words are smaller or not shown at all.

In this tutorial, we’ll build a web application using Python and Flask that transforms the latest news
stories into word clouds and displays them to our visitors.

At the end of this tutorial, our users will see a page similar to the one shown below, but containing
the latest news headlines from BBC news. We’ll learn some tricks about web scraping, RSS feeds,
and building image files directly in memory along the way.

Image: 1

Overview and requirements

We’ll be building a simple web application step-by-step and explaining each line of code in detail.
To follow, you should have some basic knowledge of programming and web concepts, such as what
if statements are and how to use URLs. We’ll be using Python for this tutorial, but we won’t assume
that you’re a Python expert.

Specifically, we’ll:

Building news word clouds using Python and Repl.it 147

• Look at RSS feeds and how to use them in Python
• Show how to set up a basic Flask web application
• Use BeautifulSoup to extract text from online news articles
• Use WordCloud to transform the text into images
• Import Bootstrap and add some basic CSS styling

We’ll be using the online programming environment Repl.it⁹⁹ so you won’t need to install any
software locally to follow along step by step. If you want to adapt this guide to your own needs,
you should create a free account by going to repl.it¹⁰⁰ and follow their sign up process.

Web scraping

We previously looked at basic web scraping in an introduction to web scraping¹⁰¹. If you’re
completely new to the idea of automatically retrieving content from the internet, have a look at
that tutorial first.

In this tutorial, instead of scraping the links to news articles directly from the BBC homepage, we’ll
be using RSS feeds¹⁰² - an old but popular standardised format that publications use to let readers
know when new content is available.

Taking a look at RSS Feeds

RSS feeds are published as XML documents. Every time BBC (and other places) publishes a new arti-
cle to their home page, they also update anXMLmachine-readable document at http://feeds.bbci.co.uk/news/world/rss.xml.
This is a fairly simple feed consisting of a <channel> element, which has some metadata and
then a list of <item> elements, each of which represents a new article. The articles are arranged
chronologically, with the newest ones at the top, so it’s easy to retrieve new content.

⁹⁹https://repl.it
¹⁰⁰https://repl.it
¹⁰¹https://www.codementor.io/garethdwyer/beginner-web-scraping-with-python-and-repl-it-nzr27jvnq
¹⁰²https://en.wikipedia.org/wiki/RSS

https://repl.it/
https://repl.it/
https://www.codementor.io/garethdwyer/beginner-web-scraping-with-python-and-repl-it-nzr27jvnq
https://en.wikipedia.org/wiki/RSS
https://repl.it/
https://repl.it/
https://www.codementor.io/garethdwyer/beginner-web-scraping-with-python-and-repl-it-nzr27jvnq
https://en.wikipedia.org/wiki/RSS

Building news word clouds using Python and Repl.it 148

Image: 2

If you click on the link above, you won’t see the XML directly. Instead, it has some associated styling
information so that most web browsers will display something that’s a bit more human friendly. For
example, opening the page in Google Chrome shows the page below. In order to view the raw XML
directly, you can right-click on the page and click “view source”.

Building news word clouds using Python and Repl.it 149

Image: 3

RSS feeds are used internally by software such as the news reader Feedly¹⁰³ and various email clients.
We’ll be consuming these RSS feeds with a Python library to retrieve the latest articles from BBC.

Setting up our online environment (Repl.it)

In this tutorial, we’ll be building our web application using Repl.it¹⁰⁴, which will allow us to have a
consistent code editor, environment, and deployment framework in a single click. Head over there
and create an account. Choose to create a Python Repl, and you should see an editor where you can
write and run Python code, similar to the image below. You can write Python code in the middle
pane, run it by pressing the green “run” button, and see the output in the right pane. In the left pane,
you can see a list of files, with main.py added there by default.

¹⁰³feedly.com
¹⁰⁴repl.it

feedly.com
repl.it
feedly.com
repl.it

Building news word clouds using Python and Repl.it 150

Image: 4

Pulling data from our feed and extracting URLs

In the previous webscraping tutorial¹⁰⁵ we used BeautifulSoup¹⁰⁶ to look for hyperlinks in a page
and extract them. Now that we are using RSS, we can simply parse the feed as described above to
find these same URLs. We will be using the Python feedparser¹⁰⁷ library to do this.

Let’s start by simply printing out the URLs for all of the latest articles from BBC. Switch back to the
main.py file in the Repl.it IDE and add the following code.

1 import feedparser

2

3 BBC_FEED = "http://feeds.bbci.co.uk/news/world/rss.xml"

4 feed = feedparser.parse(BBC_FEED)

5

6 for article in feed['entries']:

7 print(article['link'])

Feedparser does most of the heavy lifting for us, so we don’t have to get too close to the slightly
cumbersome XML format. In the code above, we parse the feed into a nice Python representation
(line 4), loop through all of the entries (the <item> entries from the XML we looked at earlier), and
print out the link elements.

If you run this code, you should see a few dozen URLs output on the right pane, as in the image
below.
¹⁰⁵https://www.codementor.io/garethdwyer/beginner-web-scraping-with-python-and-repl-it-nzr27jvnq
¹⁰⁶https://www.crummy.com/software/BeautifulSoup/bs4/doc/
¹⁰⁷https://pythonhosted.org/feedparser/

https://www.codementor.io/garethdwyer/beginner-web-scraping-with-python-and-repl-it-nzr27jvnq
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://pythonhosted.org/feedparser/
https://www.codementor.io/garethdwyer/beginner-web-scraping-with-python-and-repl-it-nzr27jvnq
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://pythonhosted.org/feedparser/

Building news word clouds using Python and Repl.it 151

Image: 5

Setting up a web application with Flask

We don’t just want to print this data out in the Repl console. Instead, our application should return
information to anyone who uses a web browser to visit our application. We’ll, therefore, install the
lightweight web framework Flask¹⁰⁸ and use this to serve web content to our visitors.

In the main.py file, we need to modify our code to look as follows:

1 import feedparser

2 from flask import Flask

3

4 app = Flask(__name__)

5

6 BBC_FEED = "http://feeds.bbci.co.uk/news/world/rss.xml"

7

8 @app.route("/")

9 def home():

10 feed = feedparser.parse(BBC_FEED)

11 urls = []

12

13 for article in feed['entries']:

¹⁰⁸http://flask.pocoo.org/

http://flask.pocoo.org/
http://flask.pocoo.org/

Building news word clouds using Python and Repl.it 152

14 urls.append(article['link'])

15

16 return str(urls)

17

18

19 if __name__ == '__main__':

20 app.run('0.0.0.0')

Here we still parse the feed and extract all of the latest article URLs, but instead of printing them
out, we add them to a list (urls), and return them from a function. The interesting parts of this code
are:

• Line 2: we import Flask
• Line 4: we initialise Flask to turn our project into a web application
• Line 8: we use a decorator to define the homepage of our application (an empty route, or /).
• Lines 19-20: We run Flask’s built-in webserver to serve our content.

Press “run” again, and you should see a new window appear in the top right pane. Here we can see
a basic web page (viewable already to anyone in the world by sharing the URL you see above it),
and we see the same output that we previously printed to the console.

Image: 6

Building news word clouds using Python and Repl.it 153

Downloading articles and extracting the text

The URLs aren’t that useful to us, as we eventually want to display a summary of the content of
each URL. The actual text of each article isn’t included in the RSS feed that we have (some RSS
feeds contain the full text of each article), so we’ll need to do some more work to download each
article. First, we’ll add the third-party libraries requests and BeautifulSoup as dependencies, again
just using the “magic import”. We’ll be using these to download the content of each article from the
URL and strip out extra CSS and JavaScript to leave us with plain text.

Now we’re ready to download the content from each article and serve that up to the user. Modify
the code in main.py to look as follows.

1 import feedparser

2 import requests

3

4 from flask import Flask

5 from bs4 import BeautifulSoup

6

7 app = Flask(__name__)

8

9 BBC_FEED = "http://feeds.bbci.co.uk/news/world/rss.xml"

10 LIMIT = 2

11

12 def parse_article(article_url):

13 print("Downloading {}".format(article_url))

14 r = requests.get(article_url)

15 soup = BeautifulSoup(r.text, "html.parser")

16 ps = soup.find_all('p')

17 text = "\n".join(p.get_text() for p in ps)

18 return text

19

20 @app.route("/")

21 def home():

22 feed = feedparser.parse(BBC_FEED)

23 article_texts = []

24

25 for article in feed['entries'][:LIMIT]:

26 text = parse_article(article['link'])

27 article_texts.append(text)

28 return str(article_texts)

29

30 if __name__ == '__main__':

31 app.run('0.0.0.0')

Building news word clouds using Python and Repl.it 154

Let’s take a closer look at what has changed.

• We import our new libraries on lines 2 and 5.
• We create a new global variable LIMIT on line 10 to limit how many articles we want to
download.

• Lines 12-18 define a new function that takes a URL, downloads the article, and extracts the
text. It does this using a crude algorithm that assumes anything inside HTML <p> (paragraph)
tags is interesting content.

• We modify lines 23, 25, 26, and 27 so that we use the new parse_article function to get the
actual content of the URLs that we found in the RSS feed and return that to the user instead
of returning the URL directly. Note that we limit this to two articles by truncating our list to
LIMIT for now, as the downloads take a while and Repl’s resources on free accounts are limited.

If you run the code now, you should see output similar to that shown in the image below (you may
need to hit refresh in the right pane). You can see text from the first article in the top-right pane now,
and the text for the second article is further down the page. You’ll notice that out text extraction
algorithm isn’t perfect and there’s still some extra text about “Share this” at the top that isn’t actually
part of the article, but this is good enough for us to create word clouds from later.

Image: 7

Returning HTML instead of plain text to the user

Although Flask allows us to return Python str objects directly to our visitors, the raw result is ugly
compared to how people are used to seeing web pages. To take advantage of HTML formatting and

Building news word clouds using Python and Repl.it 155

CSS styling, it’s better to define HTML templates, and use Flask’s template engine, jinja, to inject
dynamic content into these. Before we get to creating image files from our text content, let’s set up
a basic Flask template.

To use Flask’s templates, we need to set up a specific file structure. Press the “new folder” button
(next to the “new file” button, on the left pane), and name the resulting new folder templates. This
is a special name recognised by Flask, so make sure you get the spelling exactly correct.

Select the new folder and press the “new file” button to create a new file inside our templates folder.
Call the file home.html. Note below how the home.html file is indented one level, showing that it is
inside the folder. If yours is not, drag and drop it into the templates folder so that Flask can find it.

Image: 8

In the home.html file, add the following code, which is a mix between standard HTML and Jinja’s
templating syntax to mix dynamic content into the HTML.

1 <html>

2 <body>

3 <h1>News Word Clouds</h1>

4 <p>Too busy to click on each news article to see what it's about? Below you \

5 can see all the articles from the BBC front page, displayed as word clouds. If you w\

6 ant to read more about any particular article, just click on the wordcloud to go to \

7 the original article</p>

8 {% for article in articles %}

9 <p>{{article}}</p>

10 {% endfor %}

Building news word clouds using Python and Repl.it 156

11 </body>

12 </html>

Jinja uses the specials characters {% and {{ (in opening and closing pairs) to show where dynamic
content (e.g. variables calculated in our Python code) should be added and to define control
structures. Here we loop through a list of articles and display each one in a set of <p> tags.

We’ll also need to tweak our Python code a bit to account for the template. In the main.py file, make
the following changes.

• Add a new import near the top of the file, below the existing Flask import

1 from flask import render_template

• Update the last line of the home() function to make a call to render_template instead of
returning a str directly as follows.

1 @app.route("/")

2 def home():

3 feed = feedparser.parse(BBC_FEED)

4 article_texts = []

5

6 for article in feed['entries'][:LIMIT]:

7 text = parse_article(article['link'])

8 article_texts.append(text)

9 return render_template('home.html', articles=article_texts)

The render_template call tells Flask to prepare some HTML to return to the user by combining data
from our Python code and the content in our home.html template. Here we pass article_texts to
the renderer as articles, which matches the articles variable we loop through in home.html.

If everything went well, you should see different output now, which contains our header from the
HTML and static first paragraph, followed by two paragraphs showing the same article content that
we pulled before. If you don’t see the updated webpage, you may need to hit refresh in the right
pane again.

Building news word clouds using Python and Repl.it 157

Image: 9

Now it’s time to move on to generating the actual word clouds.

Generating word clouds from text in Python

Once again, there’s a nifty Python library that can help us. This one will take in text and return
word clouds as images and is called wordcloud.

Images are usually served as files living on your server or from an image host like imgur¹⁰⁹. Because
we’ll be creating small, short-lived images dynamically from the text, we’ll simply keep them in
memory instead of saving them anywhere permanently. In order to do this, we’ll have to mess
around a bit with the Python io and base64 libraries, alongside our newly installed wordcloud

library.

To import all the new libraries, we’ll be using to process images, modify the top of our main.py to
look as follows.

¹⁰⁹https://imgur.com/

https://imgur.com/
https://imgur.com/

Building news word clouds using Python and Repl.it 158

1 import base64

2 import feedparser

3 import io

4 import requests

5

6 from bs4 import BeautifulSoup

7 from wordcloud import WordCloud

8 from flask import Flask

9 from flask import render_template

We’ll be converting the text from each article into a separate word cloud, so it’ll be useful to have
another helper function that can take text as input and produce the word cloud as output. We can use
base64¹¹⁰ to represent the images, which can then be displayed directly in our visitors’ web browsers.

Add the following function to the main.py file.

1 def get_wordcloud(text):

2 pil_img = WordCloud().generate(text=text).to_image()

3 img = io.BytesIO()

4 pil_img.save(img, "PNG")

5 img.seek(0)

6 img_b64 = base64.b64encode(img.getvalue()).decode()

7 return img_b64

This is probably the hardest part of our project in terms of readability. Normally, we’d generate the
word cloud using the wordcloud library and then save the resulting image to a file. However, because
we don’t want to use our file system here, we’ll create a BytesIO Python object in memory instead
and save the image directly to that. We’ll convert the resulting bytes to base64 in order to finally
return them as part of our HTML response and show the image to our visitors.

In order to use this function, we’ll have to make some small tweaks to the rest of our code.

For our template, in the home.html file, change the for loop to read as follows.

1 {% for article in articles %}

2

3 {% endfor %}

Now instead of displaying our article in <p> tags, we’ll put it inside an tag so that it can be
displayed as an image. We also specify that it is formatted as a png and encoded as base64.

The last thing we need to do is modify our home() function to call the new get_wordcloud() function
and to build and render an array of images instead of an array of text. Change the home() function
to look as follows.
¹¹⁰https://en.wikipedia.org/wiki/Base64

https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64

Building news word clouds using Python and Repl.it 159

1 @app.route("/")

2 def home():

3 feed = feedparser.parse(BBC_FEED)

4 clouds = []

5

6 for article in feed['entries'][:LIMIT]:

7 text = parse_article(article['link'])

8 cloud = get_wordcloud(text)

9 clouds.append(cloud)

10 return render_template('home.html', articles=clouds)

We made changes on lines 4, 8, 9, and 10, to change to a clouds array, populate that with images
from our get_wordcloud() function, and return that in our render_template call.

If you restart the Repl and refresh the page, you should see something similar to the following. We
can see the same content from the articles, however, we can now see the important keywords without
having to read the entire article.

Image:10

For a larger view, you can pop out the website in a new browser tab using the button in the top right
of the Repl editor (indicated in red above).

The last thing we need to do is add some styling to make the page look a bit prettier and link the
images to the original articles.

Building news word clouds using Python and Repl.it 160

Adding some finishing touches

Our text looks a bit stark, and our images touch each other, which makes it hard to see that they
are separate images. We’ll fix that up by adding a few lines of CSS and importing the Bootstrap
framework.

Adding CSS

Edit the home.html file to look as follows

1 <html>

2 <head>

3 <title>News in WordClouds | Home</title>

4 <link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/3.4.1/\

5 css/bootstrap.min.css" integrity="sha384-HSMxcRTRxnN+Bdg0JdbxYKrThecOKuH5zCYotlSAcp1\

6 +c8xmyTe9GYg1l9a69psu" crossorigin="anonymous">

7

8 <style type="text/css">

9 body {padding: 20px;}

10 img{padding: 5px;}

11 </style>

12 </head>

13

14 <body>

15 <h1>News Word Clouds</h1>

16 <p>Too busy to click on each news article to see what it's about? Below you ca\

17 n see all the articles from the BBC front page, displayed as word clouds. If you wan\

18 t to read more about any particular article, just click on the wordcloud to go to th\

19 e original article</p>

20 {% for article in articles %}

21 <img src="data:image/png;base64,{{article.image}}"\

22 >

23 {% endfor %}

24 </body>

25 </html>

On line 3 we add a title, which is displayed in the browser tab. On line 4, we import Bootstrap¹¹¹,
which has some nice CSS defaults right out the box (it’s probably a bit heavy-weight for our project
as we have so little content and won’t use most of Bootstrap’s features, but it’s nice to have if you’re
planning on extending the project.)

¹¹¹https://getbootstrap.com/

https://getbootstrap.com/
https://getbootstrap.com/

Building news word clouds using Python and Repl.it 161

On lines 6-8, we add padding to the main body to stop the text going to close to the edges of the
screen, and also add padding to our images to stop them touching each other.

On line 16, we use an <a> tag to add a link to our image. We also change the Jinja templates to
{{article.url}} and {{article.image}} so that we can have images that link back to the original
news article.

Now we need to tweak our backend code again to pass through the URL and image for each article,
as the template currently doesn’t have access to the URL.

Passing through the URLs

To easily keep track of pairs of URLs and images, we’ll add a basic Python helper class called Article.
In the main.py file, add the following code before the function definitions.

1 class Article:

2 def __init__(self, url, image):

3 self.url = url

4 self.image = image

This is a simple class with two attributes: url and image. We’ll store the original URL from the RSS
feed in url and the final base64 wordcloud in image.

To use this class, modify the home() function to look as follows.

1 @app.route("/")

2 def home():

3 feed = feedparser.parse(BBC_FEED)

4 articles = []

5

6 for article in feed['entries'][:LIMIT]:

7 text = parse_article(article['link'])

8 cloud = get_wordcloud(text)

9 articles.append(Article(article['link'], cloud))

10 return render_template('home.html', articles=articles)

We changed the name of our clouds list to articles, and populated it by initialising Article objects
in the for loop and appending them to this list. We then pass across articles=articles instead of
articles=clouds in the return statement so that the template can access our list of Article objects,
which each contain the image and the URL of each article.

If you refresh the page again and expand the window using the pop out button, you’ll be able to
click any of the images to go to the original article, allowing readers to view a brief summary of the
day’s news or to read more details about any stories that catch their eye.

Building news word clouds using Python and Repl.it 162

Where next?

We’ve included several features in our web application, and looked at how to use RSS feeds and
process and serve images directly in Python, but there are a lot more features we could add. For
example:

• Our application only shows two stories at a time as the download time is slow.We could instead
look at implementing a threaded solution to downloading web pages so that we could process
several articles in parallel. Alternatively (or in addition), we could also download the articles
on a schedule and cache the resulting images so that we don’t have to do the resource heavy
downloading and parsing each time a visitor visits our site.

• Our web application only shows articles from a single source (BBC), and only from today. We
could add some more functionality to show articles from different sources and different time
frames. We could also consider allowing the viewer to choose which category of articles to
view (news, sport, politics, finance, etc) by using different RSS feeds as sources.

• Our design and layout is very basic. We could make our site look better and be more responsive
by adding more CSS. We could lay out the images in a grid of rows and columns to make it
look better on smaller screens such as mobile phones.

If you’d like to keep working on the web application, simply head over to the Repl¹¹² and fork it to
continue your own version.

In the next chapter, we’ll be looking at how to build our own Discord Chatbot.

¹¹²https://repl.it/@GarethDwyer1/news-to-wordcloud

https://repl.it/@GarethDwyer1/news-to-wordcloud
https://repl.it/@GarethDwyer1/news-to-wordcloud

Building a Discord Bot with Python
and Repl.it
In this tutorial, we’ll use Repl.it¹¹³ and Python to build a Discord Chatbot. If you’re reading this
tutorial, you probably have at least heard of Discord and likely have an existing account. If not,
Discord is a VoIP and Chat application that is designed to replace Skype for gamers. The bot we
create in this tutorial will be able to join a Discord server and respond to messages sent by people.

If you prefer JavaScript, the next chapter is the same tutorial using NodeJS instead of Python.

You’ll find it easier to follow along if you have some Python knowledge and have used Discord or a
similar app such as Skype or Telegram before. We won’t be covering the very basics of Python, but
we will explain each line of code in detail, so if you have any experience with programming, you
should be able to follow along.

Overview and requirements

We’ll be doing all of our coding through the Repl.it web IDE and hosting our bot with Repl.it as well,
so you won’t need to install any additional software on your machine. For this tutorial you will need
to create a Discord¹¹⁴ account (if you already have one, you can skip this). There are instructions for
how to do this in the next section.

In this tutorial, we will be covering:

• Creating an application and a bot user in your Discord account
• Creating a server on Discord
• Adding our bot to our Discord server

Let’s get through these admin steps first and then we can get to the fun part of coding our bot.

Creating a bot in Discord and getting a token

You can sign up for a free account over at the Discord register page¹¹⁵, and can download one of
their desktop or mobile applications from the Discord homepage¹¹⁶. You can also use Discord in the
browser.

Once you have an account, you’ll want to create a Discord application. Visit the Discord developer’s
page¹¹⁷ and press the “New application” button, as in the image below.
¹¹³https://repl.it
¹¹⁴https://discordapp.com/
¹¹⁵https://discordapp.com/register
¹¹⁶https://discordapp.com/
¹¹⁷https://discordapp.com/developers/applications/

https://repl.it/
https://discordapp.com/
https://discordapp.com/register
https://discordapp.com/
https://discordapp.com/developers/applications/
https://discordapp.com/developers/applications/
https://repl.it/
https://discordapp.com/
https://discordapp.com/register
https://discordapp.com/
https://discordapp.com/developers/applications/

Building a Discord Bot with Python and Repl.it 164

Image: 1 Creating a new Discord application

Fill out a name for your bot and select “Create”.

The first thing to do on the next page is to note your Client ID, which you’ll need to add the bot to
the server. You can come back later and get it from this page, or copy it somewhere where you can
easily find it later.

Image: 2 Record your Client ID

You can also rename the application and provide a description for your bot at this point and press
“Save Changes”.

You have now created a Discord application. The next step is to add a bot to this application, so head

Building a Discord Bot with Python and Repl.it 165

over to the “Bot” tab using the menu on the left and press the “Add Bot” button, as indicated below.
Click “Yes, do it” when Discord asks if you’re sure about bringing a new bot to life.

Imgage: 3 Adding a bot to our Discord Application

The last thing we’ll need from our bot is a Token. Anyone who has the bot’s token can prove that
they own the bot, so you’ll need to be careful not to share this with anyone. You can get the token by
pressing “Click to Reveal Token”, or copy it to your clipboard without seeing it by pressing “Copy”.

Image: 4 Generating a token for our Discord bot

Take note of your token or copy it to your clipboard, as we’ll need to add it to our code soon.

Creating a Discord server

If you don’t have a Discord server to add your bot to, you can create one by either opening the
desktop Discord application that you downloaded earlier or returning to the Discord home page in
your browser. Press the “+” icon indicated by the exclamation mark, as shown below, to create a
server.

Building a Discord Bot with Python and Repl.it 166

Image: 5 Creating a Discord server

Press “Create a server” in the screen that follows, and then give your server a name. Once the server
is up and running, you can chat with yourself, or invite some friends to chat with you. Soon we’ll
invite our bot to chat with us as well.

Adding your Discord bot to your Discord server

Our Discord bot is still just a shell at this stage as we haven’t written any code to allow him to do
anything, but let’s go ahead and add him to our Discord server anyway. To add a bot to your server,
you’ll need the Client ID from the “General Information” page that we looked at before when we
created our ReplBotApplication (ie. the client ID, not the secret bot Token).

Create a URL that looks as follows, but using your Client ID instead of mine at the end:

https://discordapp.com/api/oauth2/authorize?scope=bot&client_id=746269162917331028

Visit the URL that you created in your web browser and you’ll see a page similar to the following
where you can choose which server to add your bot to.

Building a Discord Bot with Python and Repl.it 167

Image: 6 Authorizing our bot to join our server

Select the server we created in the step before this and hit the “authorize” button. After completing
the captcha, you should get an in-app Discord notification telling you that your bot has joined your
server.

Now we can get to the fun part of building a brain for our bot!

Creating a Repl and installing our Discord
dependencies

The first thing we need to do is create a Python Repl to write the code for our Discord bot. Over at
repl.it¹¹⁸, create a new Repl, choosing “Python” as your language.

We don’t need to reinvent the wheel, as there is already a great Python wrapper for the Discord bot
API over on GitHub¹¹⁹, which makes it a lot faster to get set up with a basic Python discord bot. To
use library, we can simply write import discord at the top of main.py. Repl.it will handle installing
this dependency when you press the “run” button.

Our bot is nearly ready to go – but we still need to plug in our secret token. This will authorize our
code to control our bot.

Setting up authorization for our bot

By default, Repl.it code is public. This is great as it encourages collaboration and learning, but we
need to be careful not to share our secret bot token (which gives anyone who has access to it full

¹¹⁸https://repl.it
¹¹⁹https://github.com/Rapptz/discord.py

https://repl.it/
https://github.com/Rapptz/discord.py
https://repl.it/
https://github.com/Rapptz/discord.py

Building a Discord Bot with Python and Repl.it 168

control of our bot).

To get around the problem of needing to give our code access to the token while allowing others to
access our code but not our token, we’ll be using environment variables¹²⁰. On a normal machine,
we’d set these directly on our operating system, but using Repl.it we don’t have access to this. Repl.it
allows us to set secret environment variables through a special .env file.

First, we need to create a new file called exactly .env. Select “Add file” in the left pane, as shown in
the image below, and name this file .env. It is important not to leave out the . at the beginning.

Image: 7 Create a new file called .env

Open this new file and add a variable to define your bot’s secret token (note that this is the second
token that we got while setting up the bot – different from the Client ID that we used to add our
bot to our server). It should look something like:

1 DISCORD_BOT_SECRET=NDcUN5T32zcTjMYOM0Y1MTUy.Dk7JBw.ihrTSAO1GKHZSonqvuhtwta16WU

You’ll need to:

• Replace the token (after the = sign) with the token that Discord gave you when creating your
own bot.

• Be careful about spacing. Unlike in Python, if you put a space on either side of the = in your
.env file, these spaces will be part of the variable name or the value, so make sure you don’t
have any spaces around the = or at the end of the line.

• Run the code again. Sometimes you’ll need to refresh the whole page to make sure that your
environment variables are successfully loaded.

¹²⁰https://www.digitalocean.com/community/tutorials/how-to-read-and-set-environmental-and-shell-variables-on-a-linux-vps

https://www.digitalocean.com/community/tutorials/how-to-read-and-set-environmental-and-shell-variables-on-a-linux-vps
https://www.digitalocean.com/community/tutorials/how-to-read-and-set-environmental-and-shell-variables-on-a-linux-vps

Building a Discord Bot with Python and Repl.it 169

Image: 8 Creating our .env file

Let’s make a Discord bot that repeats everything we say but in reverse. We can do this in only a few
lines of code. In your main.py file, add the following:

1 import discord

2 import os

3

4 client = discord.Client()

5

6 @client.event

7 async def on_ready():

8 print("I'm in")

9 print(client.user)

10

11 @client.event

12 async def on_message(message):

13 if message.author != client.user:

14 await message.channel.send(message.content[::-1])

15

16 token = os.environ.get("DISCORD_BOT_SECRET")

17 client.run(token)

Let’s tear this apart line by line to see what it does.

• Lines 1-2 import the discord library that we installed earlier and the built-in operating system
library, which we’ll need to access our bot’s secret token.

• In line 4, we create a Discord Client. This is a Python object that we’ll use to send various
commands to Discord’s servers.

• In line 6, we say we are defining an event for our client. This line is a Python decorator, which
will take the function directly below it and modify it in some way. The Discord bot is going to
run asynchronously, which might be a bit confusing if you’re used to running standard Python.
We won’t go into asynchronous Python in depth here, but if you’re interested in what this is
and why it’s used, there’s a good guide over at FreeCodeCamp¹²¹. In short, instead of running

¹²¹https://medium.freecodecamp.org/a-guide-to-asynchronous-programming-in-python-with-asyncio-232e2afa44f6

https://medium.freecodecamp.org/a-guide-to-asynchronous-programming-in-python-with-asyncio-232e2afa44f6
https://medium.freecodecamp.org/a-guide-to-asynchronous-programming-in-python-with-asyncio-232e2afa44f6

Building a Discord Bot with Python and Repl.it 170

the code in our file from top to bottom, we’ll be running pieces of code in response to specific
events.

• In lines 7-9we define what kind of event we want to respond to, and what the response should
be. In this case, we’re saying that in response to the on_ready event (when our bot joins a server
successfully), we should output some information server-side (i.e. this will be displayed in our
Repl’s output, but not sent as a message through to Discord). We’ll print a simple I'm in

message to see that the bot is there and print our bot’s user id (if you’re running multiple bots,
this will make it easier to work out who’s doing what).

• Lines 11-14 are similar, but instead of responding to an on_ready event, we tell our bot how
to handle new messages. Line 13 says we only want to respond to messages that aren’t from
us (otherwise our bot will keep responding to himself – you can remove this line to see why
that’s a problem), and line 14 says we’ll send a new message to the same channel where we
received a message (message.channel) and the content we’ll send will be the same message
that we received, but backwards (message.content[::-1] - ::-1 is a slightly odd but useful
Python idiom to reverse a string or list).

The last two lines get our secret token from the environment variables that we set up earlier and
then tell our bot to start up.

Press the big green “Run” button again and you should see your bot reporting a successful channel
join in the Repl output.

Image: 9 Seeing our bot join our server

Open Discord, and from within the server we created earlier, select your ReplBotApplication from
the pane on the right-hand side of the screen.

Building a Discord Bot with Python and Repl.it 171

Image:10 The Repl bot is active

.

Once you have selected this, you will be able to send a message (by typing into the box highlighted
below) and see your bot respond!

Building a Discord Bot with Python and Repl.it 172

Image:11 Send a message to your bot

.

The bot responds each time, reversing the text we enter.

Building a Discord Bot with Python and Repl.it 173

Image:12 Our bot can talk!

.

Keeping our bot alive

Your bot can now respond to messages, but only for as long as your Repl is running. If you close your
browser tab or shut down your computer, your bot will stop and no longer respond to messages on
Discord.

Repl.it will keep your code running after you close the browser tab only if you are running a web
server. Because we are using the Python discord.py library, our bot doesn’t require an explicit web
server, but we can create a server and run it in a separate thread just to keep our Repl alive. We’ll
do this using the Flask¹²² framework.

Create a new file in your project called keep_alive.py and add the following code:

¹²²http://flask.pocoo.org/

http://flask.pocoo.org/
http://flask.pocoo.org/

Building a Discord Bot with Python and Repl.it 174

1 from flask import Flask

2 from threading import Thread

3

4 app = Flask('')

5

6 @app.route('/')

7 def home():

8 return "I'm alive"

9

10 def run():

11 app.run(host='0.0.0.0',port=8080)

12

13 def keep_alive():

14 t = Thread(target=run)

15 t.start()

We won’t go over this in detail as it’s not central to our bot, but here we start a web server that
will return “I’m alive” if anyone visits it, and we’ll provide a method to start this in a new thread
(leaving the main thread for our Repl bot).

In our main.py file, we need to add an import for this server at the top. Add the following line near
the top of main.py.

1 from keep_alive import keep_alive

In main.py we need to start up the web server just before you start up the bot. Add these three lines
to main.py, just before the line with token = os.environ.get("DISCORD_BOT_SECRET"):

1 keep_alive()

2 token = os.environ.get("DISCORD_BOT_SECRET")

3 client.run(token)

After doing this and hitting the green “Run” button again, you should see some changes to your Repl.
For one, you’ll see a new pane in the top right which shows the web output from your server. We
can see that visiting our Repl now returns a basic web page showing the “I’m alive” string that we
told our web server to return by default. In the bottom-right pane, you can also see some additional
output from Flask starting up and running continuously, listening for requests.

Building a Discord Bot with Python and Repl.it 175

Image:13 Output from our Flask server

Now your bot will stay alive even after closing your browser or shutting down your development
machine. Repl will still clean up your server and kill your bot after about one hour of inactivity,
so if you don’t use your bot for a while, you’ll have to log into Repl and start the bot up again.
Alternatively, you can set up a third-party (free!) service like Uptime Robot¹²³. Uptime Robot pings
your site every 5 minutes to make sure it’s still working – usually to notify you of unexpected
downtime, but in this case, the constant pings have the side effect of keeping our Repl alive as it will
never go more than an hour without receiving any activity.

Forking and extending our basic bot

This is not a very useful bot as is, but the possibilities are only limited by your creativity now! You
can have your bot receive input from a user, process the input, and respond in any way you choose.
In fact, with the basic input and output that we’ve demonstrated, we have most of the components of
any modern computer, all of which are based on the Von Neumann architecture¹²⁴ (we could easily
add the missing memory by having our bot write to a file, or with a bit more effort link in a SQLite
database¹²⁵ for persistent storage).

If you followed along with this tutorial, you’ll have your own basic Repl bot to play around with and
extend. If youwere simply reading, you can easily fork this bot at https://repl.it/@GarethDwyer1/discord-
bot¹²⁶ and extend it how you want (you’ll need to add your own token and recreate the .env file

¹²³https://uptimerobot.com/
¹²⁴https://en.wikipedia.org/wiki/Von_Neumann_architecture
¹²⁵https://www.sqlite.org/index.html
¹²⁶https://repl.it/@GarethDwyer1/discord-bot

https://uptimerobot.com/
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://repl.it/@GarethDwyer1/discord-bot
https://repl.it/@GarethDwyer1/discord-bot
https://uptimerobot.com/
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://www.sqlite.org/index.html
https://repl.it/@GarethDwyer1/discord-bot

Building a Discord Bot with Python and Repl.it 176

still). Happy hacking!

If you’re stuck for ideas, why not link up your Discord bot to the Twitch API¹²⁷ to get notified when
your favourite streamers are online, or build a text adventure¹²⁸.

In the next chapter, we’ll build exactly the same bot again but using NodeJS instead of Python. Even
if you prefer Python, it’s often a good idea to build the same project in two languages so that you
can better appreciate the differences and similarities.

¹²⁷https://dev.twitch.tv/
¹²⁸https://en.wikipedia.org/wiki/Interactive_fiction

https://dev.twitch.tv/
https://en.wikipedia.org/wiki/Interactive_fiction
https://dev.twitch.tv/
https://en.wikipedia.org/wiki/Interactive_fiction

Building a Discord bot with Node.js
and Repl.it
In this tutorial, we’ll use Repl.it¹²⁹ and Node.js to build a Discord Chatbot. If you’re reading this
tutorial, you probably have at least heard of Discord and likely have an existing account. If not,
Discord is a VoIP and Chat application that is designed to replace Skype for gamers. The bot we
create in this tutorial will be able to join a Discord server and respond to messages sent by people.

If you don’t like JavaScript, there’s also a Python version of this tutorial in the previous chapter.

You’ll find it easier to follow along if you have some JavaScript knowledge and have used Discord or
a similar app such as Skype or Telegram before. We won’t be covering the very basics of JavaScript,
but we will explain each line of code in detail, so if you have any experience with programming,
you should be able to follow along.

Overview and requirements

We’ll be doing all of our coding through the Repl.it web IDE and hosting our bot with Repl.it as well,
so you won’t need to install any additional software on your machine. For this tutorial you will need
to create a Discord¹³⁰ account (if you already have one, you can skip this). There are instructions for
how to do this in the next section.

In this tutorial, we will be covering:

• Creating an application and a bot user in your Discord account
• Creating a server on Discord
• Adding our bot to our Discord server

Let’s get through these admin steps first and then we can get to the fun part of coding our bot.

Creating a bot in Discord and getting a token

You can sign up for a free account over at the Discord register page¹³¹, and can download one of
their desktop or mobile applications from the Discord homepage¹³². You can also use Discord in the
browser.

Once you have an account, you’ll want to create a Discord application. Visit the Discord developer’s
page¹³³ and press the “New application” button, as in the image below.
¹²⁹https://repl.it
¹³⁰https://discordapp.com/
¹³¹https://discordapp.com/register
¹³²https://discordapp.com/
¹³³https://discordapp.com/developers/applications/

https://repl.it/
https://discordapp.com/
https://discordapp.com/register
https://discordapp.com/
https://discordapp.com/developers/applications/
https://discordapp.com/developers/applications/
https://repl.it/
https://discordapp.com/
https://discordapp.com/register
https://discordapp.com/
https://discordapp.com/developers/applications/

Building a Discord bot with Node.js and Repl.it 178

Image: 1 Creating a new Discord application

Fill out a name for your bot and select “Create”.

The first thing to do on the next page is to note your Client ID, which you’ll need to add the bot to
the server. You can come back later and get it from this page, or copy it somewhere where you can
easily find it later.

Image: 2 Record your Client ID

You can also rename the application and provide a description for your bot at this point and press
“Save Changes”.

You have now created a Discord application. The next step is to add a bot to this application, so head

Building a Discord bot with Node.js and Repl.it 179

over to the “Bot” tab using the menu on the left and press the “Add Bot” button, as indicated below.
Click “Yes, do it” when Discord asks if you’re sure about bringing a new bot to life.

Image: 3 Adding a bot to our Discord Application

The last thing we’ll need from our bot is a Token. Anyone who has the bot’s token can prove that
they own the bot, so you’ll need to be careful not to share this with anyone. You can get the token by
pressing “Click to Reveal Token”, or copy it to your clipboard without seeing it by pressing “Copy”.

Image: 4 Generating a token for our Discord bot

Take note of your token or copy it to your clipboard, as we’ll need to add it to our code soon.

Creating a Discord server

If you don’t have a Discord server to add your bot to, you can create one by either opening the
desktop Discord application that you downloaded earlier or returning to the Discord home page in
your browser. Press the “+” icon indicated by the exclamation mark, as shown below, to create a
server.

Building a Discord bot with Node.js and Repl.it 180

Image: 5 Creating a Discord server

Press “Create a server” in the screen that follows, and then give your server a name. Once the server
is up and running, you can chat with yourself, or invite some friends to chat with you. Soon we’ll
invite our bot to chat with us as well.

Adding your Discord bot to your Discord server

Our Discord bot is still just a shell at this stage as we haven’t written any code to allow him to do
anything, but let’s go ahead and add him to our Discord server anyway. To add a bot to your server,
you’ll need the Client ID from the “General Information” page that we looked at before when we
created our ReplBotApplication (ie. the client ID, not the secret bot Token).

Create a URL that looks as follows, but using your Client ID instead of mine at the end:

https://discordapp.com/api/oauth2/authorize?scope=bot&client_id=746269162917331028

Visit the URL that you created in your web browser and you’ll see a page similar to the following
where you can choose which server to add your bot to.

Building a Discord bot with Node.js and Repl.it 181

Image: 6 Authorizing our bot to join our server

Select the server we created in the step before this and hit the “authorize” button. After completing
the captcha, you should get an in-app Discord notification telling you that your bot has joined your
server.

Now we can get to the fun part of building a brain for our bot!

Creating a Repl and installing our Discord
dependencies

The first thing we need to do is create a Node.js Repl to write the code for our Discord bot. Over at
repl.it¹³⁴, create a new Repl, choosing “Node.js” as your language.

We don’t need to reinvent the wheel as there is already a great Node wrapper for the Discord bot API
called discord.js¹³⁵. Normally we would install this third-party library through npm¹³⁶, but because
we’re using Repl.it, we can skip the installation. Our Repl will automatically pull in all dependencies.

In the default index.js file that is included with your new Repl, add the following line of code.

1 const Discord = require('discord.js');

Press the “Run” button and you should see Repl.it installing the Discord library in the output pane
on the right, as in the image below.

¹³⁴https://repl.it
¹³⁵https://discord.js.org/
¹³⁶https://www.npmjs.com/

https://repl.it/
https://discord.js.org/
https://www.npmjs.com/
https://repl.it/
https://discord.js.org/
https://www.npmjs.com/

Building a Discord bot with Node.js and Repl.it 182

Image: 7 Installing Discord.js in our Repl

Our bot is nearly ready to go – but we still need to plug in our secret token. This will authorize our
code to control our bot.

Setting up authorization for our bot

By default, Repl code is public. This is great as it encourages collaboration and learning, but we need
to be careful not to share our secret bot token (which gives anyone who has access to it full control
of our bot).

To get around the problem of needing to give our code access to the token while allowing others to
access our code but not our token, we’ll be using environment variables¹³⁷. On a normal machine,
we’d set these directly on our operating system, but using Repl.it we don’t have access to this. Repl.it
allows us to set secrets in environment variables through a special .env file.

First, we need to create a new file called exactly .env. Select “Add file” and name this file .env. It
is important not to leave out the . at the beginning. Open this new file and add a variable to define
your bot’s secret token (note that this is the second token that we got while setting up the bot –
different from the Client ID that we used to add our bot to our server). It should look something
like:

1 DISCORD_BOT_SECRET=NDcUN5T32zcTjMYOM0Y1MTUy.Dk7JBw.ihrTSAO1GKHZSonqvuhtwta16WU

¹³⁷https://www.digitalocean.com/community/tutorials/how-to-read-and-set-environmental-and-shell-variables-on-a-linux-vps

https://www.digitalocean.com/community/tutorials/how-to-read-and-set-environmental-and-shell-variables-on-a-linux-vps
https://www.digitalocean.com/community/tutorials/how-to-read-and-set-environmental-and-shell-variables-on-a-linux-vps

Building a Discord bot with Node.js and Repl.it 183

You’ll need to:

• Replace the token below (after the = sign) with the token that Discord gave you when creating
your own bot.

• Be careful about spacing. If you put a space on either side of the = in your .env file, these
spaces will be part of the variable name or the value, so make sure you don’t have any spaces
around the = or at the end of the line.

• Run the code again. Sometimes you’ll need to refresh the whole page to make sure that your
environment variables are successfully loaded.

In the image below we’ve highlighted the “Add file” button, the new file (.env) and how to define
the secret token for our bot’s use.

Image: 8 Creating our .env file

Let’s make a Discord bot that repeats everything we say but in reverse. We can do this in only a few
lines of code. In your index.js file, add the following:

1 const Discord = require('discord.js');

2 const client = new Discord.Client();

3 const token = process.env.DISCORD_BOT_SECRET;

4

5 client.on('ready', () => {

6 console.log("I'm in");

7 console.log(client.user.username);

8 });

9

10 client.on('message', msg => {

11 if (msg.author.id != client.user.id) {

12 msg.channel.send(msg.content.split('').reverse().join(''));

13 }

14 });

15

16 client.login(token);

Building a Discord bot with Node.js and Repl.it 184

Let’s tear this apart line by line to see what it does.

• Line 1 is what we had earlier. This line both tells Repl.it to install the third party library and
brings it into this file so that we can use it.

• In line 2, we create a Discord Client. We’ll use this client to send commands to the Discord
server to control our bot and send it commands.

• In line 3 we retrieve our secret token from the environment variables (which Repl.it sets from
our .env file).

• In line 5, we define an event for our client, which defines how our bot should react to the
“ready” event. The Discord bot is going to run asynchronously, which might be a bit confusing
if you’re used to running standard synchronous code. We won’t go into asynchronous coding
in depth here, but if you’re interested in what this is and why it’s used, there’s a good guide
over at RisingStack¹³⁸. In short, instead of running the code in our file from top to bottom, we’ll
be running pieces of code in response to specific events.

• In lines 6-8 we define how our bot should respond to the “ready” event, which is fired when
our bot successfully joins a server. We instruct our bot to output some information server side
(i.e. this will be displayed in our Repl’s output, but not sent as a message through to Discord).
We’ll print a simple I'm in message to see that the bot is there and print our bot’s username
(if you’re running multiple bots, this will make it easier to work out who’s doing what).

• Lines 10-14 are similar, but instead of responding to an “ready” event, we tell our bot how
to handle new messages. Line 11 says we only want to respond to messages that aren’t from
us (otherwise our bot will keep responding to himself – you can remove this line to see why
that’s a problem), and line 12 says we’ll send a new message to the same channel where we
received a message (msg.channel) and the content we’ll send will be the same message that we
received, but backwards. To reverse a string, we split it into its individual characters, reverse
the resulting array, and then join it all back into a string again.

The last line fires up our bot and uses the token we loaded earlier to log into Discord.

Press the big green “Run” button again and you should see your bot reporting a successful channel
join in the Repl output.

¹³⁸https://blog.risingstack.com/node-hero-async-programming-in-node-js/

https://blog.risingstack.com/node-hero-async-programming-in-node-js/
https://blog.risingstack.com/node-hero-async-programming-in-node-js/

Building a Discord bot with Node.js and Repl.it 185

Image: 9 Repl output showing channel join

Open Discord, and from within the server we created earlier, select your ReplBotApplication from
the pane on the right-hand side of the screen.

Image:10 The Repl bot is active

.

Once you have selected this, you will be able to send a message (by typing into the box highlighted
below) and see your bot respond!

Building a Discord bot with Node.js and Repl.it 186

Image:11 Send a message to your bot

.

The bot responds each time, reversing the text we enter.

Building a Discord bot with Node.js and Repl.it 187

Image:12 Our bot can talk!

.

Keeping our bot alive

Your bot can now respond to messages, but only for as long as your Repl is running. If you close your
browser tab or shut down your computer, your bot will stop and no longer respond to messages on
Discord.

Repl will keep your code running after you close the browser tab only if you are running a web
server. Our bot doesn’t require an explicit web server to run, but we can create a server and run it
in the background just to keep our Repl alive.

Create a new file in your project called keep_alive.js and add the following code:

1 var http = require('http');

2

3 http.createServer(function (req, res) {

4 res.write("I'm alive");

5 res.end();

6 }).listen(8080);

Building a Discord bot with Node.js and Repl.it 188

We won’t go over this in detail as it’s not central to our bot, but here we start a web server that will
return “I’m alive” if anyone visits it.

In our index.js file, we need to add a require statement for this server at the top. Add the following
line near the top of index.js.

1 const keep_alive = require('./keep_alive.js')

After doing this and hitting the green “Run” button again, you should see some changes to your
Repl. For one, you’ll see a new pane in the top right which shows the web output from your server.
We can see that visiting our Repl now returns a basic web page showing the “I’m alive” string that
we told our web server to return by default.

Image:13 Running a Node server in the background

Now your bot will stay alive even after closing your browser or shutting down your development
machine. Repl will still clean up your server and kill your bot after about one hour of inactivity,
so if you don’t use your bot for a while, you’ll have to log into Repl and start the bot up again.
Alternatively, you can set up a third-party (free!) service like Uptime Robot¹³⁹. Uptime Robot pings
your site every 5 minutes to make sure it’s still working – usually to notify you of unexpected
downtime, but in this case the constant pings have the side effect of keeping our Repl alive as it will
never go more than an hour without receiving any activity. Note that you need to select the HTTP
option instead of the Ping option when setting up Uptime Robot, as Repl.it requires regular HTTP
requests to keep your chatbot alive.

¹³⁹https://uptimerobot.com/

https://uptimerobot.com/
https://uptimerobot.com/

Building a Discord bot with Node.js and Repl.it 189

Forking and extending our basic bot

This is not a very useful bot as is, but the possibilities are only limited by your creativity now! You
can have your bot receive input from a user, process the input, and respond in any way you choose.
In fact, with the basic input and output that we’ve demonstrated, we have most of the components of
any modern computer, all of which are based on the Von Neumann architecture¹⁴⁰ (we could easily
add the missing memory by having our bot write to a file, or with a bit more effort link in a SQLite
database¹⁴¹ for persistent storage).

If you followed along this tutorial, you’ll have your own basic Repl bot to play around with and ex-
tend. If youwere simply reading, you can easily forkmy bot at https://repl.it/@GarethDwyer1/discord-
bot-node¹⁴² and extend it how you want (you’ll need to add your own token and recreate the .env
file still). Happy hacking!

If you’re stuck for ideas, why not link up your Discord bot to the Twitch API¹⁴³ to get notified when
your favourite streamers are online, or build a text adventure¹⁴⁴.

In the next chapter, we’ll be looking at building our own basic web application, using Django. This
tutorial will also introduce you to HTML, JavaScript, and jQuery and will assist you in getting to
the point where you can begin to build your own custom web applications.

¹⁴⁰https://en.wikipedia.org/wiki/Von_Neumann_architecture
¹⁴¹https://www.sqlite.org/index.html
¹⁴²https://repl.it/@GarethDwyer1/discord-bot-node
¹⁴³https://dev.twitch.tv/
¹⁴⁴https://en.wikipedia.org/wiki/Interactive_fiction

https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://repl.it/@GarethDwyer1/discord-bot-node
https://repl.it/@GarethDwyer1/discord-bot-node
https://dev.twitch.tv/
https://en.wikipedia.org/wiki/Interactive_fiction
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://www.sqlite.org/index.html
https://repl.it/@GarethDwyer1/discord-bot-node
https://dev.twitch.tv/
https://en.wikipedia.org/wiki/Interactive_fiction

Creating and hosting a basic web
application with Django and Repl.it

In this tutorial, we’ll be using Django to create an online service that shows visitors their current
weather and location. We’ll develop the service and host it using repl.it¹⁴⁵.

To work through this tutorial, you should ideally have basic knowledge of Python and some
knowledge of web application development. However, we’ll explain all of our reasoning and each
line of code thoroughly , so if you have any programming experience you should be able to follow
along as a complete Python or web app beginner too. We’ll also be making use of some HTML,
JavaScript, and jQuery, so if you have been exposed to these before you’ll be able to work through
more quickly. If you haven’t, this will be a great place to start.

To display the weather at the user’s current location, we’ll have to tie together a few pieces. The
main components of our system are:

• A Django¹⁴⁶ application, to show the user a webpage with dynamic data
• Ipify¹⁴⁷ to get our visitors’ IP address so that we can guess their location
• ip-api¹⁴⁸ to look up our visitors’ city and country using their IP address
• Open Weather Map¹⁴⁹ to get the current weather at our visitors’ location.

The main goals of this tutorial are to:

¹⁴⁵https://repl.it
¹⁴⁶https://www.djangoproject.com/
¹⁴⁷https://www.ipify.org/
¹⁴⁸http://ip-api.com/
¹⁴⁹https://openweathermap.org

https://repl.it/
https://www.djangoproject.com/
https://www.ipify.org/
http://ip-api.com/
https://openweathermap.org/
https://repl.it/
https://www.djangoproject.com/
https://www.ipify.org/
http://ip-api.com/
https://openweathermap.org/

Creating and hosting a basic web application with Django and Repl.it 191

• Show how to set up and host a Django application using repl.it.
• Show how to join existing APIs together to create a new service.

By using this tutorial as a starting point, you can easily create your own bespoke web applications.
Instead of showing weather data to your visitors, you could, for example, pull and combine data
from any of the hundreds of APIs found at this list of public APIs¹⁵⁰.

Setting up

You won’t need to install any software or programming languages on your local machine, as we’ll
be developing our application directly through repl.it¹⁵¹. Head over there and create an account.

Press the + button in the top right to create a new project and search for “Django Template”. Give
your project a name and press “Create repl”.

By default, Django comes with a pretty complicated folder structure of existing files and folders.
There’s also a README.md file that will open by default, giving you some guidance on how to find
your way around.

¹⁵⁰https://github.com/toddmotto/public-apis
¹⁵¹repl.it

https://github.com/toddmotto/public-apis
repl.it
https://github.com/toddmotto/public-apis
repl.it

Creating and hosting a basic web application with Django and Repl.it 192

We won’t explain what all these different components are for and how they tie together in this
tutorial. If you want to understand Django better, you should go through their official tutorial¹⁵².

In this tutorial, we’ll just look at the few files that we need to modify to get our basic application
working.

Hit the Run button in the bar at the top and you’ll see Repl.it install all of the required packages and
start up the default Django app.

¹⁵²https://docs.djangoproject.com/en/2.0/intro/tutorial01/

https://docs.djangoproject.com/en/2.0/intro/tutorial01/
https://docs.djangoproject.com/en/2.0/intro/tutorial01/

Creating and hosting a basic web application with Django and Repl.it 193

Creating a static home page

Viewing the default website isn’t that interesting and you’ll notice that there are no files containing
the content you currently see, so you can’t easily modify it.

To create our own page in place, we’ll have to modify several files. If you’ve created a basic HTML
file before, you might be surprised at how complicated this step is. Like other frameworks, Django
“makes the easy things hard, and the hard things possible”. If you just want to display a basic web
page, it’s probably over kill, but as your web app grows, you’ll find use for all of the extra structure.

Let’s set up a basic “Hello world” page to make sure we have the pieces in place. You’ll need to create
several more folders and files to achieve this.

Create a folder called templates. This is where Django will get HTML templates for rendering pages.

Creating and hosting a basic web application with Django and Repl.it 194

Let’s add the HTML templates that we will use to render our static page. Create a file called
base.html within the newly created templates folder and add the following code.

1 {% load static %}

2 <!DOCTYPE html>

3

4 <html lang="en">

5 <head>

6 <meta charset="UTF-8">

7 <title>Hello World!</title>

8 <meta charset="UTF-8"/>

9 <meta name="viewport" content="width=device-width, initial-scale=1"/>

10 <link rel="stylesheet" href="{% static "css/style.css" %}">

11 </head>

12 <body>

13 {% block content %}{% endblock content %}

14 </body>

15 </html>

The above is a basic HTML template that our Django app will use when rendering pages. We also
link to a stylesheet that Django will get from a folder called static/css which we will create soon.
Note the {% load static %} in the first line, this is to tell Django that we are using static files in
this template ie. style.css.

Still in the templates folder, create a file called index.html and add the following code.

Creating and hosting a basic web application with Django and Repl.it 195

1 {% extends "base.html" %}

2

3 {% block content %}

4 <h1>Hello World!</h1>

5 {% endblock content %}

This is a file written in Django’s template language¹⁵³, which often looks very much like HTML (and
is usually found in files with a .html extension), but which contains some extra functionality to help
us load dynamic data from the back end of our web application into the front end for our users to
see.

The above extends the base.html template and adds the block content to it, in this case “Hello
World!”.

Django looks for template folders within “app” folders by default. This is helpful when you have
multiple apps within your project but in this case we don’t so we need to tell Django where to find
our templates folder.

Open the mysite/settings.py file, scroll down to TEMPLATES and add os.path.join(BASE_DIR,

'templates') within the square brackets next to DIRS: like below

¹⁵³https://docs.djangoproject.com/en/2.0/topics/templates/

https://docs.djangoproject.com/en/2.0/topics/templates/
https://docs.djangoproject.com/en/2.0/topics/templates/

Creating and hosting a basic web application with Django and Repl.it 196

1 'DIRS': [os.path.join(BASE_DIR, 'templates')],

Now that we have our templates added, let’s add the folders and files for adding the stylesheet.

Create a folder called static and also create a folder called css within the static folder.

Create a file called style.css within the static/css/ directory and add the following code.

1 body {

2 background-color: lightblue;

3 }

4

5 h1 {

6 color: navy;

7 margin-left: 20px;

8 }

Above we add basic CSS code to demonstrate how you can modify the look of your site.

Creating and hosting a basic web application with Django and Repl.it 197

Django handles static files similar to templates where it automatically checks app directories for a
directory called static. Since we only have a static page instead of apps we need to tell Django
where our static directory is located.

Open the mysite/settings.py file, scroll all the way down and add the following code right after
STATIC_URL ='/static/'

1 STATICFILES_DIRS = (os.path.join(BASE_DIR, 'static'),)

Creating and hosting a basic web application with Django and Repl.it 198

Within the mysite/ directory, create a file called views.py and add the following code.

1 from django.shortcuts import render

2

3 # Create your views here.

4 def home(request):

5 return render(request, 'index.html')

A view function in Django is a Python function that takes Web requests and returns a Web response.
This is where you add the logic that will return a certain response when called. In our case we define
a view that will return the index.html page.

Creating and hosting a basic web application with Django and Repl.it 199

To call this view function we need to add it to our url patterns. Open the mysite/urls.py file and
replace the contents with the below code.

1 from django.contrib import admin

2 from django.urls import path

3 from . import views

4

5 urlpatterns = [

6 path('', views.home, name= 'home'),

7 path('admin/', admin.site.urls),

8]

Note that we import the views file created earlier from . import views. Then we add the url pattern
with an empty path '' and point it to the home view created earlier. The admin/ path points to the
admin page that comes as a default with Django.

When Django receives a request it goes through the urlpatterns list until it finds a match. In our
case <url>.com will match the first path and return the home view that will render the index.html
page. If we navigate to<url>.com/admin/, Django will match the pattern of the admin/ path and
return the admin page.

Restart your server and refresh the web page on the right. You should see our “Hello World!” page.

Great, we have now put all the pieces in place for our “Hello World!” web page.Let’s expand this
and start building our weather app.

Creating and hosting a basic web application with Django and Repl.it 200

Open the templates/index.html file and change the code where it says “Hello World!” to read
“Weather” like below.

1 {% extends "base.html" %}

2

3 {% block content %}

4 <h1>Weather</h1>

5 {% endblock content %}

Click the refresh button as indicated below to see the result change from “HelloWorld!” to “Weather”.

You can also press the pop-out button to the right of the the URL bar to open only the resulting web
page that we’re building, as a visitor would see it. You can share the URL with anyone and they’ll
be able to see your Weather website already!

Creating and hosting a basic web application with Django and Repl.it 201

Changing the static text that our visitors see is a good start, but our web application still doesn’t do
anything. We’ll change that in the next step by using JavaScript to get our user’s IP Address.

Calling IPIFY from JavaScript

An IP address is like a phone number. When you visit “google.com”, your computer actually looks up
the the name google.com to get a resulting IP address that is linked to one of Google’s servers. While
people find it easier to remember names like “google.com”, computers work better with numbers.
Instead of typing “google.com” into your browser toolbar, you could type the IP address 216.58.223.46,
with the same results. Every device connecting to the internet, whether to serve content (like
google.com) or to consume it (like you, reading this tutorial) has an IP address.

IP addresses are interesting to us because it is possible to guess a user’s location based on their IP
address. (In reality, this is an imprecise and highly complicated¹⁵⁴ process, but for our purposes it will
be more than adequate). We will use the web service ipify.org¹⁵⁵ to retrieve our visitors’ IP addresses.

In the Repl.it files tab, navigate to templates/base.html, which should look as follows.

1 {% load static %}

2 <!DOCTYPE html>

3

4 <html lang="en">

5 <head>

6 <meta charset="UTF-8">

7 <title>Hello World!</title>

8 <meta charset="UTF-8"/>

9 <meta name="viewport" content="width=device-width, initial-scale=1"/>

10 <link rel="stylesheet" href="{% static "css/style.css" %}">

11 </head>

12 <body>

13 {% block content %}{% endblock content %}

¹⁵⁴https://dyn.com/blog/finding-yourself-the-challenges-of-accurate-ip-geolocation/
¹⁵⁵https://www.ipify.org/

https://dyn.com/blog/finding-yourself-the-challenges-of-accurate-ip-geolocation/
https://www.ipify.org/
https://dyn.com/blog/finding-yourself-the-challenges-of-accurate-ip-geolocation/
https://www.ipify.org/

Creating and hosting a basic web application with Django and Repl.it 202

14 </body>

15 </html>

The “head” section of this template is between lines 5 and 11 – the opening and closing <head> tags.
We’ll add our scripts directly below the <link ...> on line 10 and above the closing </head> tag on
line 11. Modify this part of code to add the following lines:

1 <script>

2 function use_ip(json) {

3 alert("Your IP address is: " + json.ip);

4 }

5 </script>

6

7 <script src="https://api.ipify.org?format=jsonp&callback=use_ip"></script>

These are two snippets of JavaScript. The first (lines 1-5) is a function that when called will display
a pop-up box (an “alert”) in our visitor’s browser showing their IP address from the json object that
we pass in. The second (line 7) loads an external script from ipify’s API and asks it to pass data
(including our visitor’s IP address) along to the use_ip function that we provide.

If you open your web app again and refresh the page, you should see this script in action (if you’re
running an adblocker, it might block the ipify scripts, so try disabling that temporarily if you have
any issues).

This code doesn’t do anything with the IP address except display it to the user, but it is enough
to see that the first component of our system (getting our user’s IP Address) is working. This also
introduces the first dynamic functionality to our app – before, any visitor would see exactly the same
thing, but now we can show each visitor something related specifically to them (no two people have
the same IP address).

Now instead of simply showing this IP address to our visitor, we’ll modify the code to rather pass it
along to our Repl webserver (the “backend” of our application), so that we can use it to fetch location
information through a different service.

Creating and hosting a basic web application with Django and Repl.it 203

Adding a new route and view, and passing data

Currently our Django application only has two routes, the default (admin/) route and our home route
(/) which is loaded as our home page. We’ll add another route at /get_weather_from_ip where we
can pass an IP address to our application to detect the location and get a current weather report.

To do this, we’ll need to modify the files at mysite/views.py and mysite/urls.py.

Edit urls.py to look as follows (add line 8, but you shouldn’t need to change anything else).

1 from django.contrib import admin

2 from django.urls import path

3 from . import views

4

5 urlpatterns = [

6 path('', views.home, name=home),

7 path('admin/', admin.site.urls),

8 path('get_weather_from_ip/', views.get_weather_from_ip, name="get_weather_from_i\

9 p"),

10]

We’ve added a definition for the get_weather_from_ip route, telling our app that if anyone
visits https://django-weather-tutorial-eugenedorfling.ritza.repl.co/get_weather_from_ip¹⁵⁶ then we
should trigger a function in our views.py file that is also called get_weather_from_ip. Let’s write
that function now.

In your views.py file, add a get_weather_from_ip() function beneath the existing home() one, and
add an import for JsonResponse on line 2. Your whole views.py file should now look like this:

1 from django.shortcuts import render

2 from django.http import JsonResponse

3

4

5 # Create your views here.

6 def home(request):

7 return render(request, 'index.html')

8

9 def get_weather_from_ip(request):

10 print(request.GET.get("ip_address"))

11 data = {"weather_data": 20}

12 return JsonResponse(data)

¹⁵⁶https://django-weather-tutorial-eugenedorfling.ritza.repl.co/get_weather_from_ip

https://django-weather-tutorial-eugenedorfling.ritza.repl.co/get_weather_from_ip
https://django-weather-tutorial-eugenedorfling.ritza.repl.co/get_weather_from_ip

Creating and hosting a basic web application with Django and Repl.it 204

By default, Django passes a request argument to all views. This is an object that contains
information about our user and the connection, and any additional arguments passed in the URL.
As our application isn’t connected to any weather services yet, we’ll just make up a temperature (20)
and pass that back to our user as JSON.

In line 10, we print out the IP address that we will pass along to this route from the GET arguments
(we’ll look at how to use this later). We then create the fake data (which we’ll later replace with
real data) and return a JSON response (the data in a format that a computer can read more easily,
with no formatting). We return JSON instead of HTML because our system is going to use this route
internally to pass data between the front and back ends of our application, but we don’t expect our
users to use this directly.

To test this part of our system, open your web application in a new tab and add /get_weather_-

from_ip?ip_address=123 to the URL. Here, we’re asking our system to fetch weather data for the
IP address 123 (not a real IP address). In your browser, you’ll see the fake weather data displayed in
a format that can easily be programmatically parsed.

Viewing the fake JSON data

In our Repl’s output, we can see that the backend of our application has found the “IP address” and
printed it out, between some other outputs telling us which routes are being visited and which port
our server is running on:

Django print output of fake IP

The steps that remain now are to:

• pass the user’s real IP address to our new route in the background when the user visits our
main page

• add more backend logic to fetch the user’s location from the IP address
• add logic to fetch the user’s weather from their location
• display this data to the user.

Let’s start by using Ajax¹⁵⁷ to pass the user’s IP address that we collected before to our new route,

¹⁵⁷https://en.wikipedia.org/wiki/Ajax_(programming)

https://en.wikipedia.org/wiki/Ajax_(programming)
https://en.wikipedia.org/wiki/Ajax_(programming)

Creating and hosting a basic web application with Django and Repl.it 205

without our user having to explicitly visit the get_weather_from_ip endpoint or refresh their page.

Calling a Django route using Ajax and jQuery

We’ll use Ajax through jQuery¹⁵⁸ to do a “partial page refresh” – that is, to update part of the page
the user is seeing by sending new data from our backend code without the user needing to reload
the page.

To do this, we need to include jQuery as a library.

Note: usually you wouldn’t add JavaScript directly to your base.html template, but to
keep things simpler and to avoid creating too many files, we’ll be diverging from some
good practices. See the Django documentation¹⁵⁹ for some guidance on how to structure
JavaScript properly in larger projects.

In your templates/base.html file, add the following script above the line where we previously
defined the use_ip() function.

1 <script

2 src="https://code.jquery.com/jquery-3.3.1.min.js"

3 integrity="sha256-FgpCb/KJQlLNfOu91ta32o/NMZxltwRo8QtmkMRdAu8="

4 crossorigin="anonymous"></script>

This loads the entire jQuery library from a CDN¹⁶⁰, allowing us to complete certain tasks using fewer
lines of JavaScript.

Now, modify the use_ip() script that we wrote before to call our backend route using Ajax. The
new use_ip() function should be as follows:

1 function use_ip(json) {

2 $.ajax({

3 url: {% url 'get_weather_from_ip' %},

4 data: {"ip": json.ip},

5 dataType: 'json',

6 success: function (data) {

7 document.getElementById("weatherdata").innerHTML = data.weather_data

8 }

9 });

10 }

¹⁵⁸http://api.jquery.com/jquery.ajax/
¹⁵⁹https://docs.djangoproject.com/en/2.0/howto/static-files/
¹⁶⁰https://www.cloudflare.com/learning/cdn/what-is-a-cdn/

http://api.jquery.com/jquery.ajax/
https://docs.djangoproject.com/en/2.0/howto/static-files/
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/
http://api.jquery.com/jquery.ajax/
https://docs.djangoproject.com/en/2.0/howto/static-files/
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/

Creating and hosting a basic web application with Django and Repl.it 206

Our new use_ip()function makes an asynchronous¹⁶¹ call to our get_weather_from_ip route,
sending along the IP address that we previously displayed in a pop-up box. If the call is successful, we
call a new function (in the success: section) with the returned data. This new function (line 7) looks
for an HTML element with the ID of weatherdata and replaces the contents with the weather_data
attribute of the response that we received from get_weather_from_ip (which at the moment is still
hardcoded to be “20”).

To see the results, we’ll need to add an HTML element as a placeholder with the id weatherdata. Do
this in the templates/index.html file as follows.

1 {% extends "base.html" %}

2

3 {% block content %}

4 <h1>Weather</h1>

5 <p id=weatherdata></p>

6 {% endblock %}

This adds an empty HTML paragraph element which our JavaScript can populate once it has the
required data.

Now reload the app and you should see our fake 20 being displayed to the user. If you don’t see what
you expect, open up your browser’s developer tools for Chrome¹⁶² and Firefox¹⁶³) and have a look

¹⁶¹http://api.jquery.com/jquery.ajax/
¹⁶²https://developers.google.com/web/tools/chrome-devtools/
¹⁶³https://developer.mozilla.org/son/docs/Tools

http://api.jquery.com/jquery.ajax/
https://developers.google.com/web/tools/chrome-devtools/
https://developer.mozilla.org/son/docs/Tools
http://api.jquery.com/jquery.ajax/
https://developers.google.com/web/tools/chrome-devtools/
https://developer.mozilla.org/son/docs/Tools

Creating and hosting a basic web application with Django and Repl.it 207

at the Console section for any JavaScript errors. A clean console (with no errors) is shown below.

Now it’s time to change out our mock data for real data by calling two services backend – the first
to get the user’s location from their IP address and the second to fetch the weather for that location.

Using ip-api.com for geolocation

The service at ip-api.com¹⁶⁴ is very simple to use. To get the country and city from an IP address we
only need to make one web call. We’ll use the python requests library for this, so first we’ll have to
add an import for this to our views.py file, and then write a function that can translate IP addresses
to location information. Add the following import to yourviews.py file:

1 import requests

and above the get_weather_from_ip() function, add theget_location_from_ip() function as
follows:

1 def get_location_from_ip(ip_address):

2 response = requests.get("http://ip-api.com/json/{}".format(ip_address))

3 return response.json()

Note: again we are diverging from best practice in the name of simplicity. Usually
whenever you write any code that relies on networking (as above), you should add
exception handling¹⁶⁵ so that your code can fail more gracefully if there are problems.

You can see the response that we’ll be getting from this service by trying it out in your browser. Visit
http://ip-api.com/json/41.71.107.123¹⁶⁶ to see the JSON response for that specific IP address.
¹⁶⁴http://ip-api.com
¹⁶⁵https://docs.python.org/3/tutorial/errors.html
¹⁶⁶http://ip-api.com/json/41.71.107.123

http://ip-api.com/
https://docs.python.org/3/tutorial/errors.html
http://ip-api.com/json/41.71.107.123
http://ip-api.com/
https://docs.python.org/3/tutorial/errors.html
http://ip-api.com/json/41.71.107.123

Creating and hosting a basic web application with Django and Repl.it 208

Take a look specifically at the highlighted location information that we’ll need to extract to pass on
to a weather service.

Before we set up the weather component, let’s display the user’s current location data instead of the
hardcoded temperature that we had before. Change the get_weather_from_ip() function to call our
new function and pass along some useful data as follows:

1 def get_weather_from_ip(request):

2 ip_address = request.GET.get("ip")

3 location = get_location_from_ip(ip_address)

4 city = location.get("city")

5 country_code = location.get("countryCode")

6 s = "You're in {}, {}".format(city, country_code)

7 data = {"weather_data": s}

8 return JsonResponse(data)

Now, instead of just printing the IP address that we get sent and making up some weather data,
we use the IP address to guess the user’s location, and pass the city and country code back to the
template to be displayed. If you reload your app again, you should see something similar to the
following (though hopefully with your location instead of mine).

weather app, location showing

That’s the location component of our app done and dusted – let’s move on to getting weather data
for that location now.

Creating and hosting a basic web application with Django and Repl.it 209

Getting weather data from OpenWeatherMap

To get weather data automatically from OpenWeatherMap¹⁶⁷, you’ll need an API Key. This is a
unique string that OpenWeatherMap gives to each user of their service and it’s used mainly to
restrict how many calls each person can make in a specified period. Luckily, OpenWeatherMap
provides a generous “free” allowance of calls, so we won’t need to spend any money to build our
app. Unfortunately, this allowance is not quite generous enough to allow me to share my key with
every reader of this tutorial, so you’ll need to sign up for your own account and generate your own
key.

Visit openweathermap.org¹⁶⁸, hit the “sign up” button, and register for the service by giving them
an email address and choosing a password. Then navigate to the API Keys¹⁶⁹ section and note down
your unique API key (or copy it to your clipboard).

OpenWeatherMap API Key page

This key is a bit like a password – when we use OpenWeatherMap’s service, we’ll always send along
this key to indicate that it’s us making the call. Because Repl.it’s projects are public by default, we’ll
need to be careful to keep this key private and prevent other people making too many calls using our
OpenWeatherMap quota (potentially making our app fail when OpenWeatherMap starts blocking
our calls). Luckily Repl.it provides a neat way of solving this problem using .env files¹⁷⁰.

In your project, create a new file using the “New file” button as shown below. Make sure that the file
is in the root of your project and that you name the file .env (in Linux, starting a filename with a .

usually indicates that it’s a system or configuration file). Inside this file, define the OPEN_WEATHER_-

¹⁶⁷https://openweathermap.org/
¹⁶⁸https://openweathermap.org/
¹⁶⁹https://home.openweathermap.org/api_keys
¹⁷⁰https://repl.it/site/docs/secret-keys

https://openweathermap.org/
https://openweathermap.org/
https://home.openweathermap.org/api_keys
https://repl.it/site/docs/secret-keys
https://openweathermap.org/
https://openweathermap.org/
https://home.openweathermap.org/api_keys
https://repl.it/site/docs/secret-keys

Creating and hosting a basic web application with Django and Repl.it 210

TOKEN variable as follows, but using your own token instead of the fake one below. Make sure not to
have a space on either side of the = sign.

1 OPEN_WEATHER_TOKEN=1be9250b94bf6803234b56a87e55f

Creating a new file

Repl.it will load the contents of this file into our server’s environment variables¹⁷¹. We’ll be able to
access this using the os library in Python, but when other people view or fork our Repl, they won’t
see the .env file, keeping our API key safe and private.

To fetch weather data, we need to call the OpenWeatherMap api, passing along a search term. To
make sure we’re getting the city that we want, it’s good to pass along the country code as well as the
city name. For example, to get the weather in London right now, we can visit (again, you’ll need to
add your ownAPI key in place of the string after appid=) https://api.openweathermap.org/data/2.5/weather?q=London,UK&units=metric&appid=cb932829eacb6a0e9ee4f382a2a56734b39

To test this, you can visit the URL in your browser first. If you prefer Fahrenheit to Celsius, simply
change the unit=metric part of the url to units=imperial.

¹⁷¹https://wiki.archlinux.org/index.php/environment_variables

https://wiki.archlinux.org/index.php/environment_variables
https://wiki.archlinux.org/index.php/environment_variables

Creating and hosting a basic web application with Django and Repl.it 211

Json response from OpenWeatherMap

Let’s write one last function in our views.py file to replicate this call for our visitor’s city which we
previously displayed.

First we need to add an import for the Python os (operating system) module so that we can access
our environment variables. At the top of views.py add:

1 import os

Now we can write the function. Add the following to views.py:

1 def get_weather_from_location(city, country_code):

2 token = os.environ.get("OPEN_WEATHER_TOKEN")

3 url = "https://api.openweathermap.org/data/2.5/weather?q={},{}&units=metric&appi\

4 d={}".format(

5 city, country_code, token)

6 response = requests.get(url)

7 return response.json()

In line 2, we get our API key from the environment variables (note, you sometimes need to refresh
the repl.it page with your repl in to properly load in the environment variables), and we then use
this to format our URL properly in line 3. We get the response from OpenWeatherMap and return
it as json.

We can now use this function in our get_weather_from_ip() function by modifying it to look as
follows:

1 def get_weather_from_ip(request):

2 ip_address = request.GET.get("ip")

3 location = get_location_from_ip(ip_address)

4 city = location.get("city")

5 country_code = location.get("countryCode")

6 weather_data = get_weather_from_location(city, country_code)

7 description = weather_data['weather'][0]['description']

8 temperature = weather_data['main']['temp']

9 s = "You're in {}, {}. You can expect {} with a temperature of {} degrees".format(\

10 city, country_code, description, temperature)

11 data = {"weather_data": s}

12 return JsonResponse(data)

Creating and hosting a basic web application with Django and Repl.it 212

We now get the weather data in line 6, parse this into a description and temperature in lines 7 and 8,
and add this to the string we pass back to our template in line 9. If you reload the page, you should
see your location and your weather.

and hit the “Fork” button. If you didn’t create an account at the beginning of this tutorial, you’ll be
prompted to create one. (You can even use a lot of Repl functionality without creating an account.)

Forking a Repl

If you’re stuck for ideas, some possible extensions are:

• Make the page look nicer by using Bootstrap¹⁷² or another CSS framework in your template
files.

• Make the app more customizable by allowing the user to choose their own location if the IP
location that we guess is wrong

• Make the app more useful by showing the weather forecast along with the current weather.
(This data is also available¹⁷³ from Open Weather Map).

• Add other location-related data to the web app such as news, currency conversion, translation,
postal codes. See https://github.com/toddmotto/public-apis#geocoding¹⁷⁴ for a nice list of
possibilities.

In the next chapter, we’ll be looking at building our own CRM app with NodeJS and Repl.it. This
tutorial will also introduce you to setting up a MongoDB database and creating a user interface.

¹⁷²https://getbootstrap.com/
¹⁷³https://openweathermap.org/forecast5
¹⁷⁴https://github.com/toddmotto/public-apis#geocoding

https://getbootstrap.com/
https://openweathermap.org/forecast5
https://github.com/toddmotto/public-apis#geocoding
https://getbootstrap.com/
https://openweathermap.org/forecast5
https://github.com/toddmotto/public-apis#geocoding

Building a CRM app with NodeJS,
Repl.it, and MongoDB
In this tutorial, we’ll use NodeJS on Repl.it, along with a MongoDB database to build a basic
CRUD¹⁷⁵ (Create, Read, Update, Delete) CRM¹⁷⁶ (Customer Relationship Management) application.
A CRM lets you store information about customers to help you track the status of every customer
relationship. This can help businesses keep track of their clients and ultimately increase sales. The
application will be able to store and edit customer details, as well as keep notes about them.

This tutorial won’t be covering the basics of Node.js, but each line of code will be explained in detail.

Overview and requirements

All of the code will be written and hosted in Repl.it, so you won’t need to install any additional
software on your computer. In this tutorial, we’ll be covering:

• Creating an account on MongoDB Atlas¹⁷⁷
• Connecting our database to our Repl
• Creating a user interface to insert customer data
• Updating and deleting database entries

By the end of the tutorial, the application you will have created will be able to create, update, and
delete documents in a MongoDB database. You will also have used a web application framework
called Express¹⁷⁸ and the Pug¹⁷⁹ templating engine.

Creating an account on MongoDB Atlas

MongoDB Atlas is a fully managed Database-as-a-Service. It provides a document database (often
referred to as NoSQL), as opposed to a more traditional relational database like PostgreSQL.

Head over to MongoDB Atlas¹⁸⁰ and hit the “Try free” button. You should then sign up, clicking the
“Get started free” button to complete the process.

¹⁷⁵https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
¹⁷⁶https://en.wikipedia.org/wiki/Customer_relationship_management
¹⁷⁷https://www.mongodb.com/cloud/atlas
¹⁷⁸https://expressjs.com/
¹⁷⁹https://pugjs.org/api/getting-started.html
¹⁸⁰https://www.mongodb.com/cloud/atlas

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Customer_relationship_management
https://www.mongodb.com/cloud/atlas
https://expressjs.com/
https://pugjs.org/api/getting-started.html
https://www.mongodb.com/cloud/atlas
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Customer_relationship_management
https://www.mongodb.com/cloud/atlas
https://expressjs.com/
https://pugjs.org/api/getting-started.html
https://www.mongodb.com/cloud/atlas

Building a CRM app with NodeJS, Repl.it, and MongoDB 214

After signing up, under “Shared Clusters”, press the “Create a Cluster” button.

You now have to select a provider and a region. For the purposes of this tutorial, we chose Google
Cloud Platform as the provider and Iowa (us-central1) as the region, although it should work
regardless of the provider and region.

Image: 1 Cluster Region

Under “Cluster Name” you can change the name of your cluster. Note that you can only change the
name now - it can’t be changed once the cluster is created. After you’ve done that, click “Create
Cluster”.

Image: 2 Cluster Name

After a bit of time, your cluster will be created. Once it’s available, click on “Database Access” under
the Security heading in the left-hand column and then click “Add New Database User”. You need a

Building a CRM app with NodeJS, Repl.it, and MongoDB 215

database user to actually store and retrieve data. Enter a username and password for the user and
make a note of those details - you’ll need them later. Select “Read and write to any database” as the
user privilege. Hit “Add User” to complete this step.

Image: 3 Adding a New Database User

Next, you need to allow network access to the database. Click on “Network Access” in the left-
hand column, and “Add IP Address”. Because we won’t have a static IP from Repl.it, we’re just
going to allow access from anywhere - don’t worry, the database is still secured with the username
and password you created earlier. In the popup, click “Allow Access From Anywhere” and then
“Confirm”.

Building a CRM app with NodeJS, Repl.it, and MongoDB 216

Image: 4 Allow Access From Anywhere

Now select “Clusters”, under “Data Storage” in the left-hand column. Click on “Connect” and select
“Connect Your Application”. This will change the pop-up view. Copy the “Connection String” as
you will need it shortly to connect to your database from Repl.it. It will look something like this:
mongodb+srv://<username>:<password>@cluster0-zrtwi.gcp.mongodb.net/test?retryWrites=true&w=majority

Building a CRM app with NodeJS, Repl.it, and MongoDB 217

Image: 5 Retrieve Your Connection String

Creating a Repl and connecting to our Database

First, we need to create a new Node.js Repl to write the code necessary to connect to our shiny new
Database. Navigate to repl.it and create a new Repl, selecting “Node.js” as the language.

A great thing about Repl is that it makes projects public by default. This makes it easy to share and is
great for collaboration and learning, but we have to be careful not to make our database credentials
available on the open Internet.

To solve this problem, we’ll be using environment variables, as we have done in previous tutorials.
We’ll create a special file that Repl.it recognizes and keeps private for you, and in that file we declare
variables that become part of our Repl.it development environment and are accessible in our code.

In your Repl, create a file called .env by selecting “Files” in the left-hand pane and then clicking the
“Add File” button. Note that the spelling has to be exact or the file will not be recognized. Add your
MongoDB database username and password (not your login details to MongoDB Atlas) into the file
in the below format:

1 MONGO_USERNAME=username

2 MONGO_PASSWORD=password

• Replace username and password with your database username and password

Building a CRM app with NodeJS, Repl.it, and MongoDB 218

• Spacing matters. Make sure that you don’t add any spaces before or after the = sign

Now that we have credentials set up for the database, we can move on to connecting to it in our
code.

MongoDB is kind enough to provide a client that we can use. To test out our database connection,
we’re going to insert some customer data into our database. In your index.js file (created
automatically and found under the Files pane), add the following code:

1 const MongoClient = require('mongodb').MongoClient;

2 const mongo_username = process.env.MONGO_USERNAME

3 const mongo_password = process.env.MONGO_PASSWORD

4

5 const uri = `mongodb+srv://${mongo_username}:${mongo_password}@cluster0-zrtwi.gcp.mo\

6 ngodb.net/crmdb?retryWrites=true&w=majority`;

7 const client = new MongoClient(uri, { useNewUrlParser: true });

Let’s break this down to see what is going on and what we still need to change:

• Line 1 adds the dependency for the MongoDB Client. As we have discussed before, Repl.it
makes things easy by installing all the dependencies for us, so we don’t have to use something
like npm to do it manually.

• Line 2 & 3we retrieve our MongoDB username and password from the environment variables
that we set up earlier.

• Line 5 has a few very important details that we need to get right.
– Replace the section between the @ and the next /with the same section of your connection
string from MongoDB that we copied earlier. You may notice the ${mongo_username} and
${mongo_password} before and after the colon near the beginning of the string. These are
called Template Literals. Template Literals allow us to put variables in a string, which
Node.js will then helpfully replace with the actual values of the variables.

– Note crmdb after the / and before the ?. This will be the name of the database that we will
be using. MongoDB creates the database if it doesn’t exist for us. You can change this to
whatever you want to name the database, but remember what you changed it to for future
sections of this tutorial.

• Line 6 creates the client that we will use to connect to the database.

Making a user interface to insert customer data

We’re going to make an HTML form that will capture the customer data and send it to our Repl.it
code, which will then insert it into our database.

In order to actually present and handle an HTML form, we need a way to process HTTP GET and
POST requests. The easiest way to do this is to use a web application framework. A web application

Building a CRM app with NodeJS, Repl.it, and MongoDB 219

framework is designed to support the development of web applications - it gives you a standard way
to build your application and lets you get to building your application fast without having to do the
boilerplate code.

A really simple, fast and flexible Node.js web application framework is Express¹⁸¹, which provides
a robust set of features for the development of web applications.

The first thing we need to do is add the dependencies we need. Right at the top of your index.js file
(above the MongoDB code), add the following lines:

1 let express = require('express');

2 let app = express();

3 let bodyParser = require('body-parser');

4 let http = require('http').Server(app);

5

6 app.use(bodyParser.json())

7 app.use(bodyParser.urlencoded({ extended: true }));

Let’s break this down.

• Line 1 adds the dependency for Express. Repl.it will take care of installing it for us.
• Line 2 creates a new Express app that will be needed to handle incoming requests.
• Line 3 adds a dependency for ‘body-parser’. This is needed for the Express server to be able to
handle the data that the form will send, and give it to us in a useful format to use in the code.

• Line 4 adds a dependency for a basic HTTP server.
• Line 6 & 7 tell the Express app which parsers to use on incoming data. This is needed to handle
form data.

Next, we need to add a way for the Express to handle an incoming request and give us the form that
we want. Add the following lines of code below that which you just added:

1 app.get('/', function (req, res) {

2 res.sendFile('/index.html', {root:'.'});

3 });

4

5 app.get('/create', function (req, res) {

6 res.sendFile('/create.html', {root:'.'});

7 });

• app.get tells Express that we want it to handle a GET request.

¹⁸¹https://expressjs.com/

https://expressjs.com/
https://expressjs.com/

Building a CRM app with NodeJS, Repl.it, and MongoDB 220

• '/' tells Express that it should respond to GET requests sent to the root URL. A root URL looks
something like ‘https://crm.hawkiesza.repl.co’ - note that there are no slashes after the URL.

• '/create' tells Express that it should respond to GET requests to /create after the root URL i.e.
‘https://crm.hawkiesza.repl.co/create’

• res.sendFile tells Express to send the given file as a response.

Before the server will start receiving requests and sending responses, we need to tell it to run. Add
the following code below the previous line.

1 app.set('port', process.env.PORT || 5000);

2 http.listen(app.get('port'), function() {

3 console.log('listening on port', app.get('port'));

4 });

• Line 1 tells Express to set the port number to either a number defined as an environment
variable, or 5000 if no definition was made.

• Line 2-4 tells the server to start listening for requests.

Nowwe have an Express server listening for requests, but we haven’t yet built the form that it needs
to send back if it receives a request.

Make a new file called index.html and paste the following code into it:

1 <!DOCTYPE html>

2 <html>

3 <body>

4 <form action="/create" method="GET">

5 <input type="submit" value="Create">

6 </form>

7

8 </body>

9 </html>

This is just a simple bit of HTML that puts a single button on the page. When this button is clicked
it sends a GET request to /create, which the server will then respond to according to the code that
we wrote above - in our case it will send back the create.html file which we will define now.

Make a new file called create.html and paste the following into it:

Building a CRM app with NodeJS, Repl.it, and MongoDB 221

1 <!DOCTYPE html>

2 <html>

3 <body>

4

5 <h2>Customer details</h2>

6

7 <form action="/create" method="POST">

8 <label for="name" >Customer name *</label>

9 <input type="text" id="name" name="name" class="textInput" placeholder="John Smith\

10 " required>

11

12 <label for="address" >Customer address *</label>

13 <input type="text" name="address" class="textInput" placeholder="42 Wallaby Way, S\

14 ydney" required>

15

16 <label for="telephone" >Customer telephone *</label>

17 <input type="text" name="telephone" class="textInput" placeholder="+275554202" req\

18 uired>

19

20 <label for="note" >Customer note</label>

21 <input type="text" name="note" class="textInput" placeholder="Needs a new pair of \

22 shoes">

23

24 <input type="submit" value="Submit">

25 </form>

26

27 </body>

28 </html>

We won’t go in-depth into the above HTML. It is a very basic form with 4 fields (name, address,
telephone, note) and a Submit button, which creates an interface that will look like the one below.

Building a CRM app with NodeJS, Repl.it, and MongoDB 222

Image: 6 Customer Details

When the user presses the submit button a POST request is made to /create with the data in the
form - we still have to handle this request in our code as we’re currently only handling a GET request
to /.

If you now start up your application (click the “run” button) a new window should appear on the
right that displays the “create” button we defined just now in “create.html”. You can also navigate to
https://<repl_name>.<your_username>.repl.co (replace <repl_name> with whatever you named
your Repl (but with no underscores or spaces) and <your_username> with your Repl username) to
see the form. You will be able to see this URL in your Repl itself.

Building a CRM app with NodeJS, Repl.it, and MongoDB 223

Image: 7 Run Your Application

If you select “create” and then fill in the form and hit submit, you’ll get a response back that says
Cannot POST /create. This is because we haven’t added the code that handles the form POST request,
so let’s do that.

Image: 8 Cannot POST/create

Add the following code into your index.js file, below the app.get entry that we made above.

1 app.post('/create', function (req, res, next) {

2 client.connect(err => {

3 const customers = client.db("crmdb").collection("customers");

4

5 let customer = { name: req.body.name, address: req.body.address, telephone: req.\

6 body.telephone, note: req.body.note };

7 customers.insertOne(customer, function(err, res) {

8 if (err) throw err;

9 console.log("1 customer inserted");

Building a CRM app with NodeJS, Repl.it, and MongoDB 224

10 });

11 })

12 res.send('Customer created');

13 })

• Line 1 defines a new route that listens for an HTTP ‘POST’ request at /create.
• Line 2 connects to the database. This happens asynchronously, so we define a callback function
that will be called once the connection is made.

• Line 3 creates a new collection of customers. Collections in MongoDB are similar to Tables in
SQL.

• Line 5 defines customer data that will be inserted into the collection. This is taken from the
incoming request. The form data is parsed using the parsers that we defined earlier and is then
placed in the req.body variable for us to use in the code.

• Line 6 inserts the customer data into the collection. This also happens asynchronously, and so
we define another callback function that will get an error if an error occurred, or the response
if everything happened successfully.

• Line 7 throws an error if the above insert had a problem.
• Line 8 gives us some feedback that the insert happened successfully.

If you now run the Repl (you may need to refresh it) and submit the filled-in form, you’ll get a
message back that says “Customer created”. If you then go and look in your cluster in MongoDB
and select the “collections” button, you’ll see a document has been created with the details that we
submitted in the form.

Image: 9 Customer Created

Updating and deleting database entries

As a final step in this tutorial, we want to be able to update and delete database documents in our
collection. To make things simpler, we’re going to make a new HTML page where we can request a
document and then update or delete it.

First, let’s make the routes to our new page. In your index.js, add the following code below the rest
of your routing code (ie. before the MongoDB code):

Building a CRM app with NodeJS, Repl.it, and MongoDB 225

1 app.get('/get', function (req, res) {

2 res.sendFile('/get.html', {root:'.'});

3 });

4

5 app.get('/get-client', function (req, res) {

6 client.connect(err => {

7 client.db("crmdb").collection("customers").findOne({name: req.query.name}, f\

8 unction(err, result) {

9 if (err) throw err;

10 res.render('update', {oldname: result.name, oldaddress: result.address, ol\

11 dtelephone: result.telephone, oldnote: result.note, name: result.name, address: resu\

12 lt.address, telephone: result.telephone, note: result.note});

13 });

14 });

15 });

• Line 1-3 as before, this tells Express to respond to incoming GET requests on /get by sending
the get.html file which we will define below.

• Line 5-12 this tells Express to respond to incoming GET requests on /get-client.
– Line 7 makes a call to the database to fetch a customer by name. If there are more than 1
with the same name, then the first one found will be returned.

– Line 9 tells Express to render the update template, replacing variables with the given
values as it goes. Important to note here is that we are also replacing values in the hidden
form fields we created earlier with the current values of the customer details. This is to
ensure that we update or delete the correct customer.

In your index.html file, add the following code after the </form> tag:

1

2 <form action="/get" method="GET">

3 <input type="submit" value="Update/Delete">

4 </form>

This adds a new button that will make a GET request to /get, which will then return get.html.

Building a CRM app with NodeJS, Repl.it, and MongoDB 226

Image:10 Index

Make a new file called get.html with the following contents:

1 <!DOCTYPE html>

2 <html>

3 <body>

4 <form action="/get-client" method="GET">

5 <label for="name" >Customer name *</label>

6 <input type="text" id="name" name="name" class="textInput" placeholder="John Smi\

7 th" required>

8 <input type="submit" value="Get customer">

9 </form>

10 </body>

11 </html>

This makes a simple form with an input for the customer’s name and a button.

Image:11 Get Customer

Clicking this button will then make a GET call to /get-client which will respond with the client
details where we will be able to update or delete them.

To actually see the customer details on a form after requesting them, we need a templating engine to
render them onto the HTML page and send the rendered page back to us. With a templating engine,
you define a template - a page with variables in it - and then give it the values you want to fill into
the variables. In our case, we’re going to request the customer details from the database and tell the
templating engine to render them onto the page.

We’re going to use a templating engine called Pug¹⁸². Pug is a simple templating engine that
¹⁸²https://pugjs.org/api/getting-started.html

https://pugjs.org/api/getting-started.html
https://pugjs.org/api/getting-started.html

Building a CRM app with NodeJS, Repl.it, and MongoDB 227

integrates fully with Express. The syntax that Pug uses is very similar to HTML. One important
difference in the syntax is that spacing is very important as it determines your parent/child
hierarchy.

First, we need to tell Express which templating engine to use and where to find our templates. Put
the following line above your route definitions (i.e. after the other app. lines in index.js):

1 app.engine('pug', require('pug').__express)

2 app.set('views', '.')

3 app.set('view engine', 'pug')

Now create a new file called update.pug with the following content:

1 html

2 body

3 p #{message}

4 h2= 'Customer details'

5 form(method='POST' action='/update')

6 input(type='hidden' id='oldname' name='oldname' value=oldname)

7 input(type='hidden' id='oldaddress' name='oldaddress' value=oldaddress)

8 input(type='hidden' id='oldtelephone' name='oldtelephone' value=oldtelephone)

9 input(type='hidden' id='oldnote' name='oldnote' value=oldnote)

10 label(for='name') Customer name:

11 br

12 input(type='text', placeholder='John Smith' name='name' value=name)

13 br

14 label(for='address') Customer address:

15 br

16 input(type='text', placeholder='42 Wallaby Way, Sydney' name='address' value=a\

17 ddress)

18 br

19 label(for='telephone') Customer telephone:

20 br

21 input(type='text', placeholder='+275554202' name='telephone' value=telephone)

22 br

23 label(for='note') Customer note:

24 br

25 input(type='text', placeholder='Likes unicorns' name='note' value=note)

26 br

27 button(type='submit' formaction="/update") Update

28 button(type='submit' formaction="/delete") Delete

This is very similar to theHTML formwe created previously for create.html, however this is written

Building a CRM app with NodeJS, Repl.it, and MongoDB 228

in the Pug templating language. We’re creating a hidden element to store the “old” name, telephone,
address, and note of the customer - this is for when we want to do an update.

Using the old details to update the customer is an easy solution, but not the best solution as it makes
the query cumbersome and slow. If you add extra fields into your database you would have to
remember to update your query as well, otherwise it could lead to updating or deleting the wrong
customer if they have the same information. A better, but more complicated way is to use the unique
ID of the database document as that will only ever refer to one customer.

We have also put in placeholder variables for name, address, telephone, and note, and we have given
the form 2 buttons with different actions.

If you now run the code, you will have an index page with 2 buttons. Pressing the ‘Update/Delete’
button will take you to a new page that asks for a Customer name. Filling the customer name and
pressing ‘Get customer’ will, after a little time, load a page with the customer’s details and 2 buttons
below that say ‘Update’ and ‘Delete’. Make sure you enter a customer name you have entered before.

Image:12 Update-Delete

Our next step is to add the ‘Update’ and ‘Delete’ functionality. Add the following code below your
routes in index.js:

Building a CRM app with NodeJS, Repl.it, and MongoDB 229

1 app.post('/update', function(req, res) {

2 client.connect(err => {

3 if (err) throw err;

4 let query = { name: req.body.oldname, address: req.body.oldaddress, telephone: r\

5 eq.body.oldtelephone, note: req.body.oldnote };

6 let newvalues = { $set: {name: req.body.name, address: req.body.address, telepho\

7 ne: req.body.telephone, note: req.body.note } };

8 client.db("crmdb").collection("customers").updateOne(query, newvalues, function(\

9 err, result) {

10 if (err) throw err;

11 console.log("1 document updated");

12 res.render('update', {message: 'Customer updated!', oldname: req.body.name, \

13 oldaddress: req.body.address, oldtelephone: req.body.telephone, oldnote: req.body.no\

14 te, name: req.body.name, address: req.body.address, telephone: req.body.telephone, n\

15 ote: req.body.note});

16 });

17 });

18 })

19

20 app.post('/delete', function(req, res) {

21 client.connect(err => {

22 if (err) throw err;

23 let query = { name: req.body.name, address: req.body.address ? req.body.address \

24 : null, telephone: req.body.telephone ? req.body.telephone : null, note: req.body.no\

25 te ? req.body.note : null };

26 client.db("crmdb").collection("customers").deleteOne(query, function(err, obj) {

27 if (err) throw err;

28 console.log("1 document deleted");

29 res.send(`Customer ${req.body.name} deleted`);

30 });

31 });

32 })

This introduces 2 new ‘POST’ handlers - one for /update, and one for /delete.

• Line 2 connects to our MongoDB database.
• Line 3 throws an error if there was a problem connecting to the database.
• Line 4 defines a query that we will use to find the document to update. In this case, we are
using the details of the customer before it was updated. We saved this name earlier in a hidden
field in the HTML. Trying to find the customer by its updated name obviously won’t work
because it hasn’t been updated yet. Also, note that we are setting some of the fields to null if
they are empty. This is so that the database returns the correct document when we update or

Building a CRM app with NodeJS, Repl.it, and MongoDB 230

delete - if we search for a document that has no address with an address of ‘’ (empty string),
then our query won’t return anything.

• Line 5 defines the new values that we want to update our customer with.
• Line 6 updates the customer with the new values using the query
• Line 7 throws an error if there was a problem with the update.
• Line 8 logs that a document was updated.
• Line 9 re-renders the update page with a message saying that the customer was updated, and
displays the new values.

• Line 15 connects to our MongoDB database.
• Line 16 throws an error if there was a problem connecting to the database.
• Line 17 defines a query that we will use to find the document to delete. In this case we are
using all the details of the customer before any changes were made on the form to make sure
we delete that specific customer.

• Line 18 we connect to the database and delete the customer.
• Line 19 throws an error if there was a problem with the delete.
• Line 20 logs that a document was deleted.
• Line 21 sends a response to say that the customer was deleted.

Putting it all together

If you run your application now, you’ll be able to create, update, and delete documents in aMongoDB
database. This is a very basic CRUD application, with a very basic and unstyled UI, but it should
give you the foundation to build much more sophisticated applications.

Some ideas for this are:
*You could add fields to the database to classify customers according to which stage they are in your
sales pipeline¹⁸³ so that you can track if a customer is potentially stuck somewhere and contact them
to re-engage.
*You could then integrate some basic marketing automation with a page allowing you to send an
email or SMS to customers (though don’t spam clients!).
*You could also add fields to keep track of customer purchasing information so that you can see
which products do well with which customers.

If youwant to start fromwhere this tutorial leaves off, fork the Repl at https://repl.it/@GarethDwyer1/nodejs-
crm¹⁸⁴.

In the next chapter, we’ll be introducing using machine learning to classify text in Repl.it.

¹⁸³https://www.bitrix24.com/glossary/what-is-pipeline-management-definition-crm.php
¹⁸⁴https://repl.it/@GarethDwyer1/nodejs-crm

https://www.bitrix24.com/glossary/what-is-pipeline-management-definition-crm.php
https://repl.it/@GarethDwyer1/nodejs-crm
https://repl.it/@GarethDwyer1/nodejs-crm
https://www.bitrix24.com/glossary/what-is-pipeline-management-definition-crm.php
https://repl.it/@GarethDwyer1/nodejs-crm

Introduction to Machine Learning
with Python and Repl.it
In this tutorial, we’re going to walk through how to set up a basic Python Repl¹⁸⁵ that can learn the
difference between two categories of sentences, positive and negative. For example, if you had the
sentence “I love it!”, we want to train a machine to know that this sentence is associated with happy
and positive emotions. If we have a sentence like “it was really terrible”, we want the machine to
label it as a negative or sad sentence.

Themaths, specifically calculus and linear algebra, behindmachine learning gets a bit hairy.We’ll be
abstracting this away with the Python library scikit-learn¹⁸⁶, which makes it possible to do advanced
machine learning in a few lines of Python.

At the end of this tutorial, you’ll understand the fundamental ideas of automatic classification and
have a program that can learn by itself to distinguish between different categories of text. You’ll be
able to use the same code to learn new categories (e.g. spam/not-spam, or clickbait/non-clickbait).

Overview and requirements

To follow along with this tutorial, you should have at least basic knowledge of Python or a similar
programming language. Ideally, you should also sign up for a Repl.it¹⁸⁷ account so that you can
modify and extend the bot we build, but it’s not completely necessary.

In this tutorial, we will:

• Create some simple mock data - text to classify as positive or negative
• Explain vectorisation of the dataset
• Cover how to classify text using a machine learning classifier
• Compare this to a manual classifier

Setting up

Create a new Python Repl and open the main.py file that Repl created for you automatically. Add
the following two imports to the top and run the Repl so that these dependencies are installed.

¹⁸⁵https://repl.it
¹⁸⁶https://scikit-learn.org/
¹⁸⁷https://repl.it

https://repl.it/
https://scikit-learn.org/
https://repl.it/
https://repl.it/
https://scikit-learn.org/
https://repl.it/

Introduction to Machine Learning with Python and Repl.it 232

1 from sklearn import tree

2 from sklearn.feature_extraction.text import CountVectorizer

In line 1, we import the treemodule, which will give us a Decision Tree classifier that can learn from
data. In line 2, we import a vectoriser – something that can turn text into numbers. We’ll describe
each of these in more detail soon!

Throughout the next steps, you can hit the big green “run” button to run your code, check for bugs,
and view output along the way (you should do this every time you add new code).

Creating some mock data

Before we get started with the exciting part, we’ll create a very simple dataset – too simple in fact.
You might not see the full power of machine learning at first as our task will look so easy, but once
we’ve walked through the concepts, it’ll be a simple matter of swapping the data out for something
bigger and more complicated.

On the next lines of main.py add the following lines of code.

1 positive_texts = [

2 "we love you",

3 "they love us",

4 "you are good",

5 "he is good",

6 "they love mary"

7]

8

9 negative_texts = [

10 "we hate you",

11 "they hate us",

12 "you are bad",

13 "he is bad",

14 "we hate mary"

15]

16

17 test_texts = [

18 "they love mary",

19 "they are good",

20 "why do you hate mary",

21 "they are almost always good",

22 "we are very bad"

23]

Introduction to Machine Learning with Python and Repl.it 233

We’ve created three simple datasets of five sentences each. The first one contains positive sentences;
the second one contains negative sentences; and the last contains a mix of positive and negative
sentences.

It’s immediately obvious to a human which sentences are positive and which are negative, but can
we teach a computer to tell them apart?

We’ll use the two lists positive_texts and negative_texts to train our model. That is, we’ll show
these examples to the computer along with the correct answers for the question “is this text positive
or negative?”. The computer will try to find rules to tell the difference, and then we’ll test how well
it did by giving it test_texts without the answers and ask it to guess whether each example is
positive or negative.

Understanding vectorization

The first step in nearly all machine learning problems is to translate your data from a format that
makes sense to a human to one that makes sense to a computer. In the case of language and text data,
a simple but effective way to do this is to associate each unique word in the dataset with a number,
from 0 onwards. Each text can then be represented by an array of numbers, representing how often
each possible word appears in the text.

Let’s go through an example to see how this works. If we had the two sentences

["nice pizza is nice"], ["what is pizza"]

then we would have a dataset with four unique words in it. The first thing we’d want to do is create
a vocabulary mapping to map each unique word to a unique number. We could do this as follows:

1 {

2 "nice": 0,

3 "pizza": 1,

4 "is": 2,

5 "what": 3

6 }

To create this, we simply go through both sentences from left to right, mapping each new word
to the next available number and skipping words that we’ve seen before. We can now convert our
sentences into bag of words vectors as follows, where we indicate the frequency of occurrence of
each of the words in our vocabulary:

Introduction to Machine Learning with Python and Repl.it 234

1 [

2 [2, 1, 1, 0], # two "nice", one "pizza", one "is", zero "what"

3 [0, 1, 1, 1] # zero "nice", one "pizza", one "is", one "what"

4]

Each sentence vector is always the same length as the total vocabulary size. We have four words in
total (across all of our sentences), so each sentence is represented by an array of length four. Each
position in the array represents a word, and each value represents how often that word appears in
that sentence.

The first sentence contains the word “nice” twice, while the second sentence does not contain the
word “nice” at all. According to our mapping, the zeroth element of each array should indicate how
often the word nice appears, so the first sentence contains a 2 in the beginning and the second
sentence contains a 0 there.

This representation is called “bag of words” because we lose all of the information represented by
the order of words. We don’t know, for example, that the first sentence starts and ends with “nice”,
only that it contains the word “nice” twice.

With real data, these arrays get very long. There are millions of words in most languages, so for a big
dataset containing most words, each sentence needs to be represented by a very long array, where
nearly all values are set to zero (all the words not in that sentence). This could take up a lot of space,
but luckily scikit-learn uses a clever sparse-matrix implementation to overcome this. This doesn’t
quite look like the above, but the overall concept remains the same.

Let’s see how to achieve the above using scikit-learn’s optimised vectoriser.

First we want to combine all of our “training” data (the data that we’ll show the computer along
with the correct labels of “positive” or “negative” so that it can learn), so we’ll combine our positive
and negative texts into one array. Add the following code below the datasets you created.

1 training_texts = negative_texts + positive_texts

2 training_labels = ["negative"] * len(negative_texts) + ["positive"] * len(positive_t\

3 exts)

Our dataset now looks like this:

1 ['we hate you', 'they hate us', 'you are bad', 'he is bad', 'we hate mary', 'we love\

2 you', 'they love us', 'you are good', 'he is good', 'they love mary']

3 ['negative', 'negative', 'negative', 'negative', 'negative', 'positive', 'positive',\

4 'positive', 'positive', 'positive']

The two arrays (texts and labels) are associated by index. The first text in the first array is negative,
and corresponds to the first label in the second array, and so on.

Now we need a vectoriser to transform the texts into numbers. We can create one in scikit-learn
with

Introduction to Machine Learning with Python and Repl.it 235

1 vectorizer = CountVectorizer()

Before we can use our vectorizer, it needs to run once through all the data we have so it can build
the mapping from words to indices. This is referred to as “fitting” the vectoriser, and we can do it
like this:

1 vectorizer.fit(training_texts)

If we want, we can see the mapping it created (which might not be in order, as in the examples
we walked through earlier, but each word will have its own index). We can inspect the vectoriser’s
vocabulary by adding the line

1 print(vectorizer.vocabulary_)

(Note the underscore at the end. Scikit-learn uses this as a convention for “helper” attributes. The
mapping is explicit only for debugging purposes and you shouldn’t need to use it in most cases). My
vocabulary mapping looked as follows:

1 {'we': 10, 'hate': 3, 'you': 11, 'they': 8, 'us': 9, 'are': 0, 'bad': 1, 'he': 4, 'i\

2 s': 5, 'mary': 7, 'love':6, 'good': 2}

Behind the scenes, the vectoriser inspected all of our texts, did same basic preprocessing like making
everything lowercase, split the text into words using a built-in tokenization method, and produced
a vocabulary mapping specific to our dataset.

Now that we have a vectorizer that knows what words are in our dataset, we can use it to transform
our texts into vectors. Add the following lines of code to your Repl:

1 training_vectors = vectorizer.transform(training_texts)

2 testing_vectors = vectorizer.transform(test_texts)

The first line creates a list of vectors which represent all of the training texts, still in the same order,
but now each text is a vector of numbers instead of a string.

The second line does the same with the test vectors. The machine learning part isn’t looking at our
test texts (that would be cheating) – it’s just mapping the words to numbers so that it can work with
them more easily. Note that when we called fit() on the vectoriser, we only showed it the training
texts. Because there are words in the test texts that don’t appear in the training texts, these words
will simply be ignored and will not be represented in testing_vectors.

Now that we have a vectorised representation of our problem, let’s take a look at how we can solve
it.

Introduction to Machine Learning with Python and Repl.it 236

Understanding classification

A classifier is a statistical model that tries to predict a label for a given input. In our case, the input is
the text and the output is either “positive” or “negative”, depending on whether the classifier thinks
that the input is positive or negative.

A machine learning classifier can be “trained”. We give it labelled data and it tries to learn rules
based on that data. Every time it gets more data, it updates its rules slightly to account for the new
information. There are many kinds of classifiers, but one of the simplest is called a Decision Tree.

Decision trees learn a set of yes/no rules by building decisions into a tree structure. Each new input
moves down the tree, while various questions are asked one by one. When the input filters all the
way to a leaf node in the tree, it acquires a label.

If that’s confusing, don’t worry! We’ll walk through a detailed example with a picture soon to clarify.
First, let’s show how to get some results using Python.

Add the following lines to main.py:

1 classifier = tree.DecisionTreeClassifier()

2 classifier.fit(training_vectors, training_labels)

3 predictions = classifier.predict(testing_vectors)

4 print(predictions)

Similarly to the vectoriser, we first create a classifier by using the module we imported at the start.
Then we call fit() on the classifier and pass in our training vectors and their associated labels. The
decision tree is going to look at both and attempt to learn rules that separate the two kinds of data.

Once our classifier is trained, we can call the predict()method and pass in previously unseen data.
Here we pass in testing_vectors which is the list of vectorized test data that the computer didn’t
look at during training. It has to try and apply the rules it learned from the training data to this new
“unseen” data. Machine learning is pretty cool, but it’s not magic, so there’s no guarantee that the
rules we learned will be any good yet.

The code above produces the following output:

1 ['positive' 'positive' 'negative' 'positive' 'negative']

Let’s take a look at our test texts again to see if these predictions match up to reality.

Introduction to Machine Learning with Python and Repl.it 237

1 "they love mary"

2 "they are good"

3 "why do you hate mary"

4 "they are almost always good"

5 "we are very bad"

The output maps to the input by index, so the first output label (“positive”) matches up to the first
input text (“they love mary”), and the last output label (“negative”) matches up to the last input text
(“we are very bad”).

It looks like the computer got every example right! It’s not a difficult problem to solve. The words
“bad” and “hate” appear only in the negative texts and the words “good” and “love”, only in the
positive ones. Other words like “they”, “mary”, “you” and “we” appear in both good and bad texts. If
our model did well, it will have learned to ignore the words that appear in both kinds of texts, and
focus on “good”, “bad”, “love” and “hate”.

Decision Trees are not the most powerful machine learning model, but they have one advantage
over most other algorithms: after we have trained them, we can look inside and see exactly how
they work. More advanced models like deep neural networks are nearly impossible to make sense
of after training.

The Scikit-learn tree module contains a useful function to assist in visualising trees. Add the
following code to the end of your Repl:

1 import matplotlib.pyplot as plt

2 fig = plt.figure(figsize=(5,5))

3 tree.plot_tree(classifier,feature_names = vectorizer.get_feature_names(), rounded = \

4 True, filled = True)

5 fig.savefig('tree.png')

In the left-hand pane, you should see a file called ‘tree.png’. If you open it, your tree graph should
look as follows:

Introduction to Machine Learning with Python and Repl.it 238

Image: 1 A visualised decision tree

The above shows a decision tree that only learned two rules. The first rule (top square) is about the
word “hate”. The rule is “is the number of times ‘hate’ occurs in this sentence less than or equal to
0.5”. None of our sentences contain duplicate words, so each rule will really be only about whether
the word appears or not (you can think of the <= 0.5 rules as < 1 in this case).

For each question in our training dataset, we can ask if the first rule is True or False. If the rule is
True for a given sentence, we’ll move that sentence down the tree left. If not, we’ll go right.

Once we’ve asked this first question for each sentence in our dataset, we’ll have three sentences for
which the answer is “False”, because three of our training sentences contain the word “hate”. These
three sentences go right in the decision tree and end up at first leaf node (an end node with no arrows
coming out the bottom). This leaf node has value = [3,0] in it, which means that three samples
reach this node, and three belong to the negative class and zero to the positive class.

For each sentence where the first rule is “True” (the word “hate” appears less than 0.5 times, or in
our case 0 times), we go down the left of the tree, to the node where value = [2,5]. This isn’t a leaf
node (it has more arrows coming out the bottom), so we’re not done yet. At this point we have two
negative sentences and all five positive sentences still.

Introduction to Machine Learning with Python and Repl.it 239

The next rule is “bad <= 0.5”. In the same way as before, we’ll go down the right path if we have
more than 0.5 occurrences of “bad” and left if we have fewer than 0.5 occurrences of “bad”. For the
last two negative sentences that we are still evaluating (the two containing “bad”), we’ll go right
and end up at the node with value=[2,0]. This is another leaf node and when we get here we have
two negative sentences and zero positive ones.

All other data will go left, and we’ll end up at [0,5], or zero negative sentences and five positive
ones.

As an exercise, take each of the test sentences (not represented in the annotated tree above) and try
to follow the set of rules for each one. If it ends up in a bucket with more negative sentences than
positive ones (either of the right branches), it’ll be predicted as a negative sentence. If it ends up in
the left-most leaf node, it’ll be predicted as a positive sentence.

Building a manual classifier

When the task at hand is this simple, it’s often easier to write a couple of rules manually rather than
using Machine Learning. For this dataset, we could have achieved the same result by writing the
following code.

1 def manual_classify(text):

2 if "hate" in text:

3 return "negative"

4 if "bad" in text:

5 return "negative"

6 return "positive"

7

8 predictions = []

9 for text in test_texts:

10 prediction = manual_classify(text)

11 predictions.append(prediction)

12 print(predictions)

Here we have replicated the decision tree above. For each sentence, we check if it contains “hate”
and if it does we classify it as negative. If it doesn’t, we check if it contains “bad”, and if it does, we
classify it as negative. All other sentences are classified as positive.

So what’s the difference between machine learning and traditional rule-based models like this one?
The main advantage of learning the rules directly is that it doesn’t really get more difficult as the
dataset grows. Our dataset was trivially simple, but a real-world dataset might need thousands or
millions of rules, and while we could write a more complicated set of if-statements “by hand”, it’s
much easier if we can teach machines to learn these by themselves.

Introduction to Machine Learning with Python and Repl.it 240

Also, once we’ve perfected a set of manual rules, they’ll still only work for a single dataset. But once
we’ve perfected a machine learning model, we can use it for many tasks, simply by changing the
input data!

In the example we walked through, our model was a perfect student and learned to correctly classify
all five unseen sentences, this is not usually the case for real-world settings. Because machine
learning models are based on probability, the goal is to make them as accurate as possible, but
in general you will not get 100% accuracy. Depending on the problem, you might be able to get
higher accuracy by hand-crafting rules yourself, so machine learning definitely isn’t the correct tool
to solve all classification problems.

Try the code on bigger datasets to see how it performs. There is no shortage of interesting data sets
to experiment with. For example, you could have a look at positive vs negative movie reviews from
IMDB using the dataset here¹⁸⁸. See if you can load the dataset from there into the classifier we built
in this tutorial and compare the results.

You can fork this Repl here: https://repl.it/@GarethDwyer1/machine-learning-intro¹⁸⁹ to keep
hacking on it (it’s the same code as we walked through above but with some comments added.)
If you prefer, the entire program is shown at the end of this tutorial, so you can copy paste it and
work from there.

In the next chapter, we’ll be investigating the Quicksort algorithm.Whether you’re applying for jobs
or just like algorithms, it’s useful to understand how sorting works. In real projects, most of the time
you’ll just call .sort(), but here you’ll build a sorter from scratch and understand how it works.

—

1 from sklearn import tree

2 from sklearn.feature_extraction.text import CountVectorizer

3 import matplotlib.pyplot as plt

4

5 positive_texts = [

6 "we love you",

7 "they love us",

8 "you are good",

9 "he is good",

10 "they love mary"

11]

12

13 negative_texts = [

14 "we hate you",

15 "they hate us",

16 "you are bad",

17 "he is bad",

¹⁸⁸https://keras.io/api/datasets/imdb/
¹⁸⁹https://repl.it/@GarethDwyer1/machine-learning-intro

https://keras.io/api/datasets/imdb/
https://repl.it/@GarethDwyer1/machine-learning-intro
https://keras.io/api/datasets/imdb/
https://repl.it/@GarethDwyer1/machine-learning-intro

Introduction to Machine Learning with Python and Repl.it 241

18 "we hate mary"

19]

20

21 test_texts = [

22 "they love mary",

23 "they are good",

24 "why do you hate mary",

25 "they are almost always good",

26 "we are very bad"

27]

28

29 training_texts = negative_texts + positive_texts

30 training_labels = ["negative"] * len(negative_texts) + ["positive"] * len(positive_t\

31 exts)

32

33 vectorizer = CountVectorizer()

34 vectorizer.fit(training_texts)

35 print(vectorizer.vocabulary_)

36

37 training_vectors = vectorizer.transform(training_texts)

38 testing_vectors = vectorizer.transform(test_texts)

39

40 classifier = tree.DecisionTreeClassifier()

41 classifier.fit(training_vectors, training_labels)

42

43 print(classifier.predict(testing_vectors))

44

45 fig = plt.figure(figsize=(5,5))

46 tree.plot_tree(classifier,feature_names = vectorizer.get_feature_names(), rounded = \

47 True, filled = True)

48 fig.savefig('tree.png')

49

50 def manual_classify(text):

51 if "hate" in text:

52 return "negative"

53 if "bad" in text:

54 return "negative"

55 return "positive"

56

57 predictions = []

58 for text in test_texts:

59 prediction = manual_classify(text)

60 predictions.append(prediction)

Introduction to Machine Learning with Python and Repl.it 242

61 print(predictions)

Quicksort tutorial: Python
implementation with line by line
explanation
In this tutorial, we’ll be going over the Quicksort¹⁹⁰ algorithm with a line-by-line explanation. We’ll
go through how the algorithm works, build it in Repl.it and then time it to see how efficient it is.

Overview and requirements

We’re going to assume that you already know at least something about sorting algorithms¹⁹¹, and
have been introduced to the idea of Quicksort. By the end of this tutorial, you should have a better
understanding of how it works.

We’re also going to assume that you’ve covered some more fundamental computer science concepts,
especially recursion¹⁹², on which Quicksort relies.

To recap, Quicksort is one of the most efficient and most commonly used algorithms to sort a list
of numbers. Unlike its competitor, Mergesort, Quicksort can sort a list in place, without the need to
create a copy of the list, and therefore saving on memory requirements.

The main intuition behind Quicksort is that if we can efficiently partition a list, then we can
efficiently sort it. Partitioning a list means that we pick a pivot item in the list, and then modify
the list to move all items larger than the pivot to the right and all smaller items to the left.

Once the pivot is done, we can do the same operation to the left and right sections of the list
recursively until the list is sorted.

Here’s a Python implementation of Quicksort. Have a read through it and see if it makes sense. If
not, read on below!

¹⁹⁰https://en.wikipedia.org/wiki/Quicksort
¹⁹¹https://en.wikipedia.org/wiki/Sorting_algorithm
¹⁹²https://en.wikipedia.org/wiki/Recursion#In_computer_science

https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Recursion#In_computer_science
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Recursion#In_computer_science

Quicksort tutorial: Python implementation with line by line explanation 244

1 def partition(xs, start, end):

2 follower = leader = start

3 while leader < end:

4 if xs[leader] <= xs[end]:

5 xs[follower], xs[leader] = xs[leader], xs[follower]

6 follower += 1

7 leader += 1

8 xs[follower], xs[end] = xs[end], xs[follower]

9 return follower

10

11 def _quicksort(xs, start, end):

12 if start >= end:

13 return

14 p = partition(xs, start, end)

15 _quicksort(xs, start, p-1)

16 _quicksort(xs, p+1, end)

17

18 def quicksort(xs):

19 _quicksort(xs, 0, len(xs)-1)

The Partition algorithm

The idea behind the partition algorithm seems intuitive, but the actual algorithm to do it efficiently
is pretty counter-intuitive.

Let’s start with the easy part – the idea. We have a list of numbers that isn’t sorted. We pick a point
in this list, and make sure that all larger numbers are to the right of that point and all the smaller
numbers are to the left. For example, given the random list:

1 xs = [8, 4, 2, 2, 1, 7, 10, 5]

We could pick the last element (5) as the pivot point. We would want the list (after partitioning) to
look as follows:

1 xs = [4, 2, 2, 1, 5, 7, 10, 8]

Note that this list isn’t sorted, but it has some interesting properties. Our pivot element, 5, is in the
correct place (if we sort the list completely, this element won’t move). Also, all the numbers to the
left are smaller than 5and all the numbers to the right are greater.

Because 5 is the in the correct place, we can ignore it after the partition algorithm (we won’t need
to move it again). This means that if we can sort the two smaller sublists to the left and right of

Quicksort tutorial: Python implementation with line by line explanation 245

5() [4, 2, 2, 1] and [7, 10, 8]) then the entire list will be sorted. Any time we can efficiently
break a problem into smaller sub-problems, we should think of recursion as a tool to solve our main
problem. Using recursion, we often don’t even have to think about the entire solution. Instead, we
define a base case (a list of length 0 or 1 is always sorted), and a way to divide a larger problem into
smaller ones (e.g. partitioning a list in two), and almost by magic the problem solves itself!

But we’re getting ahead of ourselves a bit. Let’s take a look at how to actually implement the partition
algorithm on its own, and then we can come back to using it to implement a sorting algorithm.

A bad partition implementation

You could probably easily write your own partition algorithm that gets the correct results without
referring to any textbook implementations or thinking about it too much. For example:

1 def bad_partition(xs):

2 smaller = []

3 larger = []

4 pivot = xs.pop()

5 for x in xs:

6 if x >= pivot:

7 larger.append(x)

8 else:

9 smaller.append(x)

10 return smaller + [pivot] + larger

In this implementation, we set up two temporary lists (smaller and larger). We then take the pivot
element as the last element of the list (pop takes the last element and removes it from the original
xs list).

We then consider each element x in the list xs. The ones that are smaller than the pivot, we store in
the smaller temporary list, and the others go to the larger temporary list. Finally, we combine the
two lists with the pivot item in the middle, and we have partitioned our list.

This is much easier to read than the implementation at the start of this post, so why don’t we do it
like this?

The primary advantage of Quicksort is that it is an in place sorting algorithm. Although for the toy
examples we’re looking at, it might not seem like much of an issue to create a few copies of our list,
if you’re trying to sort terabytes of data, or if you are trying to sort any amount of data on a very
limited computer (e.g a smartwatch), then you don’t want to needlessly copy arrays around.

In Computer Science terms, this algorithm has a space-complexity of O(2n), where n is the number
of elements in our xs array. If we consider our example above of xs = [8, 4, 2, 2, 1, 7, 10, 5],
we’ll need to store all 8 elements in the original xs array as well as three elements ([7, 10, 8]] in
the larger array and four elements ([4, 2, 2, 1]) in the smaller array. This is a waste of space!
With some clever tricks, we can do a series of swap operations on the original array and not need
to make any copies at all.

Quicksort tutorial: Python implementation with line by line explanation 246

Overview of the actual partition implementation

Let’s pull out a few key parts of the good partition function that might be especially confusing
before getting into the detailed explanation. Here it is again for reference.

1 def partition(xs, start, end):

2 follower = leader = start

3 while leader < end:

4 if xs[leader] <= xs[end]:

5 xs[follower], xs[leader] = xs[leader], xs[follower]

6 follower += 1

7 leader += 1

8 xs[follower], xs[end] = xs[end], xs[follower]

9 return follower

In our good partition function, you can see that we do some swap operations (lines 5 and 8) on the
xs that is passed in, but we never allocate any new memory. This means that the storage remains
constant to the size of xs, or O(n) in Computer Science terms. That is, this algorithm has half the
space requirement of the “bad” implementation above, and should therefore allow us to sort lists
that are twice the size using the same amount of memory.

The confusing part of this implementation is that although everything is based around our pivot
element (the last item of the list in our case), and although the pivot element ends up somewhere in
the middle of the list at the end, we don’t actually touch the pivot element until the very last swap.

Instead, we have two other counters (follower and leader) which move around the smaller and
bigger numbers in a clever way and implicitly keep track of where the pivot element should end up.
We then switch the pivot element into the correct place at the end of the loop (line 8).

The leader is just a loop counter. Every iteration it increments by one until it gets to the pivot
element (the end of the list). The follower is more subtle, and it keeps count of the number of swap
iterations we do, moving up the list more slowly than the leader, tracking where our pivot element
should eventually end up.

The other confusing part of this algorithm is on line 4. We move through the list from left to right.
All numbers are currently to the left of the pivot but we eventually want the “big” items to end up
on the right.

Intuitively, you would then expect us to do the swapping action when we find an item that is larger
than the pivot, but in fact, we do the opposite. When we find items that are smaller than the pivot,
we swap the leader and the follower.

You can think of this as pushing the small items further to the left. Because the leader is always
ahead of the follower, when we do a swap, we are swapping a small element with one further left in
the list. The follower only looks at “big” items (ones that the leader has passed over without action),
so when we do the swap, we’re swapping a small item (leader) with a big one (follower), meaning
that small items will move towards the left and large ones towards the right.

Quicksort tutorial: Python implementation with line by line explanation 247

Line by line examination of partition

We define partition with three arguments, xs which is the list we want to sort, start which is the
index of the first element to consider and end which is the index of the last element to consider.

We need to define the start and end arguments because we won’t always be partitioning the entire
list. As we work through the sorting algorithm later, we are going to be working on smaller and
smaller sublists, but because we don’t want to create new copies of the list, we’ll be defining these
sublists by using indexes to the original list.

In line 2, we start off both of our pointers – follower, and leader – to be the same as the beginning
of the segment of the list that we’re interested in. The leader is going to move faster than the follower,
so we’ll carry on looping until the leader falls off the end of the list segment (while leader < end).

We could take any element we want as a pivot element, but for simplicity, we’ll just choose the last
element. In line 4 then, we compare the leader element to the pivot. The leader is going to step
through each and every item in our list segment, so this means that when we’re done, we’ll have
compared the partition with every item in the list.

If the leader element is smaller or equal to the pivot element, we need to send it further to the left
and bring a larger item (tracked by follower) further to the right. We do this in lines 4-5, where if
we find a case where the leader is smaller or equal to the pivot, we swap it with the follower. At
this point, the follower is pointing at a small item (the one that was leader a moment ago), so we
increment follower by one in order to track the next item instead. This has a side effect of counting
how many swaps we do, which incidentally tracks the exact place that our pivot element should
eventually end up.

Whether or not we did a swap, we want to consider the next element in relation to our pivot, so in
line 7 we increment leader.

Once we break out of the loop (line 8), we need to swap the pivot item (still on the end of the list)
with the follower (which has moved up one for each element that was smaller than the pivot). If
this is still confusing, look at our example again:

1 xs = [8, 4, 2, 2, 1, 7, 10, 5]

In xs, there are 4 items that are smaller than the pivot. Every time we find an item that is smaller
than the pivot, we increment follower by one. This means that at the end of the loop, follower will
have incremented 4 times and be pointing at index 4 in the original list. By inspection, you can see
that this is the correct place for our pivot element (5).

The last thing we do is return the follower index, which now points to our pivot element in its correct
place. We need to return this as it defines the two smaller sub-problems in our partitioned list - we
now want to sortxs[0:4] (the first 4 items, which form an unsorted list) and the xs[5:] (the last 3
items, which form an unsorted list).

Quicksort tutorial: Python implementation with line by line explanation 248

1 xs = [4, 2, 2, 1, 5, 7, 10, 8]

If you want another way to visualise exactly how this works, going over some examples by hand
(that is, writing out a short randomly ordered list with a pen and paper, and writing out the new
list at each step of the algorithm) is very helpful. You can also watch this detailed YouTube video¹⁹³
where KC Ang demonstrates every step of the algorithm using paper cups in under 5 minutes!

The Quicksort function

Once we get the partition algorithm right, sorting is easy. We’ll define a helper _quicksort function
first to handle the recursion and then implement a prettier public function after.

1 def _quicksort(xs, start, end):

2 if start >= end:

3 return

4 p = partition(xs, start, end)

5 _quicksort(xs, start, p-1)

6 _quicksort(xs, p+1, end)

To sort a list, we partition it (line 4), sort the left sublist (line 5: from the start of the original list up
to the pivot point), and then sort the right sublist (line 6: from just after the pivot point to the end
of the original list). We do this recursively with the end boundary moving left, closer to start, for
the left sublists and the start boundary moving right, closer to end, for the right sublists. When the
start and end boundaries meet (line 2), we’re done!

The first call to Quicksort will always be with the entire list that we want sorted, which means
that 0 will be the start of the list and len(xs)-1 will be the end of the list. We don’t want to have
to remember to pass these extra arguments in every time we call Quicksort from another program
(e.g. in any case where it is not calling itself), so we’ll make a prettier wrapper function with these
defaults to get the process started.

1 def quicksort(xs):

2 return _quicksort(xs, 0, len(xs)-1)

Nowwe, as users of the sorting function, can call quicksort([4,5,6,2,3,9,10,2,1,5,3,100,23,42,1]),
passing in only the list that we want sorted. This will in turn go and call the _quicksort function,
which will keep calling itself until the list is sorted.

Testing our algorithm

We canwrite some basic driver code to take our newly implementedQuicksort out for a spin. Create a
new Python Repl and add the following code to main.py. Then insert the code listed at the beginning
of this tutorial after the imports.
¹⁹³https://www.youtube.com/watch?v=MZaf_9IZCrc

https://www.youtube.com/watch?v=MZaf_9IZCrc
https://www.youtube.com/watch?v=MZaf_9IZCrc

Quicksort tutorial: Python implementation with line by line explanation 249

1 from datetime import datetime

2 import random

3

4 # create 100000 random numbers between 1 and 1000

5 xs = [random.randrange(1000) for _ in range(10)]

6

7 # look at the first few and last few

8 print(xs[:10])

9 #apply the algorithm

10 quicksort(xs)

11 # have a look at the results

12 print(xs[:10])

If you run this code, you will see the sorted list. This does what we expect, but it doesn’t tell us
about how efficient Quicksort is - so let’s take a closer look. Replace the code in main.py with the
following, and again add the code listed at the beginning of this tutorial after the imports on line 3.

1 from datetime import datetime

2 import random

3

4 # create 100000 random numbers between 1 and 1000

5 xs = [random.randrange(1000) for _ in range(100000)]

6

7 # look at the first few and last few

8 print(xs[:10], xs[-10:])

9

10 # start the clock

11 t1 = datetime.now()

12 quicksort(xs)

13 t2 = datetime.now()

14 print("Sorted list of size {} in {}".format(len(xs), t2 - t1))

15

16 # have a look at the results

17 print(xs[:10], xs[-10:])

The code generates a random list of 100 000 numbers and sorts this list in around 5 seconds. You can
compare the performance of Quicksort to some other common sorting algorithms using this Repl¹⁹⁴.

If youwant to try the code from the tutorial out, visit the Repl at https://repl.it/@GarethDwyer1/quicksort¹⁹⁵.
You’ll be able to run the code, see the results, and even fork it to continue developing or testing it
on your own.

¹⁹⁴https://repl.it/@GarethDwyer1/sorting
¹⁹⁵https://repl.it/@GarethDwyer1/quicksort?language=python3

https://repl.it/@GarethDwyer1/sorting
https://repl.it/@GarethDwyer1/quicksort?language=python3
https://repl.it/@GarethDwyer1/sorting
https://repl.it/@GarethDwyer1/quicksort?language=python3

Quicksort tutorial: Python implementation with line by line explanation 250

If you need help, the folk over at the Repl discord server¹⁹⁶ are very friendly and keen to help people
learn.
¹⁹⁶https://repl.it/discord

https://repl.it/discord
https://repl.it/discord

Hiding messages in images:
steganography with Python and
Repl.it
In this tutorial, we’ll build a steganography tool in Python. Steganography is the practice of hiding
information within other data. Unlike encryption, where the goal is to secure the contents of
communication between two parties, steganography aims to obscure the fact that the parties are
communicating at all.

Our tool will enable the user to hide secret text within a normal-looking .png image file. The receiver
of the image will use the same tool to reveal the hidden message.

We’ll use Python to build the tool. The most popular Python image processing libraries are Pillow¹⁹⁷
and OpenCV¹⁹⁸, but these are heavy libraries with many dependencies. We’ll avoid these and instead
use the lightweight PyPNG¹⁹⁹ library which is written in pure Python, and therefore easier to run
on various platforms.

A quick background on steganography

Let’s imagine three people: Alice, Bob and Eve. Alice wants to send a private message to Bob,
while Eve wants to intercept this message. While modern-day encryption can help Alice and Bob
ensure that Eve doesn’t know the contents of their message, Eve can possibly still deduce interesting
information just from knowing that Alice and Bob are communicating at all, and how frequently
they communicate.

To obscure the communication channel completely, Alice and Bob can exploit the fact that hundreds
of millions of photos are uploaded and shared across the internet daily. Instead of communicating
directly, Alice can leave her message hidden in an image at a pre-agreed location and Bob can access
this message. From Eve’s perspective, there is now no direct communication between the two.

A single image is made up of millions of pixels. While many formats exist, a pixel is most simply
represented by a group of three numbers between 0 and 255, one number each for the red, blue, and
green values of that pixel. Using this Red-Green-Blue scheme we can represent any colour in the
RGB color model²⁰⁰.
¹⁹⁷https://pypi.org/project/Pillow/
¹⁹⁸https://pypi.org/project/opencv-python/
¹⁹⁹https://pypi.org/project/pypng/
²⁰⁰https://en.wikipedia.org/wiki/RGB_color_model

https://pypi.org/project/Pillow/
https://pypi.org/project/opencv-python/
https://pypi.org/project/pypng/
https://en.wikipedia.org/wiki/RGB_color_model
https://pypi.org/project/Pillow/
https://pypi.org/project/opencv-python/
https://pypi.org/project/pypng/
https://en.wikipedia.org/wiki/RGB_color_model

Hiding messages in images: steganography with Python and Repl.it 252

Digital text, like images, is also represented internally by numbers, so the differences between a text
file and an image file are not as large as you might assume. Any digital data can be represented as
a binary string²⁰¹, a bunch of 1s and 0s, and we can make tiny modifications to an image to encode
a binary string within it. As an example, consider the following:

1 image = [(255, 0, 0), (0, 255, 0), (0, 0, 255)]

This is a representation of an image with three pixels: one red, one green, and one blue. If we encode
this as an image and open it in an image viewer, we’ll see the three pixel image, but if we read this
data with Python, it is simply a list of tuples, each containing three integers.

We could also look at each value making up each pixel and calculate whether it is odd or even. We
could encode odd numbers as 1 and even values as 0. This would give us the binary string “100 010
001” (as the 255 values are odd and the 0s are even).

If we made a small modification to the image as follows:

1 image = [(254, 1, 1), (1, 255, 1), (1, 0, 254)]

The image would look almost identical in any image viewer (we have just added or subtracted a
minuscule amount of color from some values), but the binary string – using our odd/even method
– would look completely different: “011 111 100”.

Using this technique but extending it over an entire image (millions of pixels), we can hide a large
amount of text data in any image.

Creating the project on Repl.it

If you were serious about keeping your messages as secret as possible, you’d want to do all of these
steps on an offline computer that you fully control. As a learning exercise though, we’ll set the
project up on repl.it²⁰². Navigate to their site and sign up for an account if you don’t have one.

Create a new project, choosing “Python” as the language, and give your project a name.

²⁰¹https://thehelloworldprogram.com/computer-science/what-is-binary/
²⁰²https://repl.it

https://thehelloworldprogram.com/computer-science/what-is-binary/
https://repl.it/
https://thehelloworldprogram.com/computer-science/what-is-binary/
https://repl.it/

Hiding messages in images: steganography with Python and Repl.it 253

Creating a new repl

The first piece we need to build is a function to encode any text message as a binary string.

Encoding a text message as a binary string

Open the main.py file and add the following code

1 import base64

2

3 def encode_message_as_bytestring(message):

4 b64 = message.encode("utf8")

5 bytes_ = base64.encodebytes(b64)

6 bytestring = "".join(["{:08b}".format(x) for x in bytes_])

7 return bytestring

This first encodes our text as base64²⁰³ and then as a binary string. You can add some print statements
to see how the message is transformed in the different steps, as shown below.

²⁰³https://en.wikipedia.org/wiki/Base64

https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64

Hiding messages in images: steganography with Python and Repl.it 254

Encoding a message as a binary string

The base64 step is not strictly necessary, but it is useful as any file or data can be encoded as base64.
This opens our project up to future extensions such as hiding other kinds of files within image files
instead of just text strings.

Adding an ‘end of message’ delimeter

We’ll assume that our message will always ‘fit’ in our image. We can fit three binary digits per
pixel (one for each of the RGB values), so our resulting binary string should be shorter than the the
number of pixels in the image multiplied by three.

We’ll also need to know when the message ends. The message will only be encoded in the beginning
of the image file, but if we don’t know how long the message is, we’ll keep looking at normal pixels
and trying to encode them as text data. Let’s add an “end of string” delimiter to the end of our
message: this should be something that wouldn’t appear half way through our actual message by
chance. We’ll use the binary representation of ‘!ENDOFMESSAGE!’ for this.

Modify your function to look as follows, which adds this delimeter at the end.

1 import base64

2

3 ENDOFMESSAGE = "01001001010101010101011001001111010100100100010100111001010001110101\

4 010001010101010101100101010001010101001100000100011001001000010100100101001101000101\

5 00111101"

6

7 def encode_message_as_bytestring(message):

8 b64 = message.encode("utf8")

9 bytes_ = base64.encodebytes(b64)

10 bytestring = "".join(["{:08b}".format(x) for x in bytes_])

11 bytestring += ENDOFMESSAGE

12 return bytestring

Now that we can handle some basic text encoding, let’s look at images.

Hiding messages in images: steganography with Python and Repl.it 255

Getting pixels from an image

Find a PNG image somewhere - either one you’ve taken yourself or from a site like unsplash. You
can use any online JPG to PNG converter if you only have .jpg files available.

Upload your PNG file by clicking on the three dot menu in the repl sidebar, in the top right corner
of the files pane to the left, and selecting upload file or by simply dragging and dropping your file
within the files pane.

Image showing file upload

We’re going to write a function that extracts the raw pixel data from this image file. Add an import
to the top of the file.

1 import png

And then add a new function to the bottom of main.py:

Hiding messages in images: steganography with Python and Repl.it 256

1 def get_pixels_from_image(fname):

2 img = png.Reader(fname).read()

3 pixels = img[2]

4 return pixels

The read() method returns a 4‑tuple consisting of:

• width: Width of PNG image in pixels
• height: Height of PNG image in pixels
• rows: A sequence or iterator for the row data
• info: An info dictionary containing some meta data

We are primarily interested in the third item, “rows”, which is an iterator containing all the pixels
of the image, row by row. If you’re not familiar with Python generators take a look at this guide²⁰⁴,
but they are essentially memory-efficient lists.

Encoding the image with the message

Now that we have the encoded message and pixels of the image ready we can combine them to form
our secret encoded image.

Add the following function to the bottom of the main.py file. This function takes in the outputs from
the previous functions (our raw pixels and our message encoded as a binary string), and combines
them.

1 def encode_pixels_with_message(pixels, bytestring):

2 '''modifies pixels to encode the contents from bytestring'''

3

4 enc_pixels = []

5 string_i = 0

6 for row in pixels:

7 enc_row = []

8 for i, char in enumerate(row):

9 if string_i >= len(bytestring):

10 pixel = row[i]

11 else:

12 if row[i] % 2 != int(bytestring[string_i]):

13 if row[i] == 0:

14 pixel = 1

15 else:

²⁰⁴https://realpython.com/introduction-to-python-generators/

https://realpython.com/introduction-to-python-generators/
https://realpython.com/introduction-to-python-generators/

Hiding messages in images: steganography with Python and Repl.it 257

16 pixel = row[i] - 1

17 else:

18 pixel = row[i]

19 enc_row.append(pixel)

20 string_i += 1

21

22 enc_pixels.append(enc_row)

23 return enc_pixels

This is the most complicated part of our project, but most of the code is there to handle edge cases.
The important insight is that we want to control whether each pixel has an odd value (representing
a 1 in our binary string) or an even one (to represent a 0). By chance, half of the pixel values will
already have the correct value.

We simply loop through the binary string and the pixel and ‘bump’ each value that isn’t correct by
one. That is, we subtract 1 from the value if we need to change it from odd to even or vice versa. We
don’t want any negative numbers, so if we need to change any of the 0 values, we add 1 instead.

Writing our modified pixels back to an image

We now have all the image data, including the encoded message but it is still just a list of pixels.
Let’s add a function that will compile our pixels back into a PNG image.

Add the following function to the bottom of the main.py file.

1 def write_pixels_to_image(pixels, fname):

2 png.from_array(pixels, 'RGB').save(fname)

The above function takes the array pixels and uses the png module to write these to a brand new
.png file.

Play around with these functions to make sure you understand how they work. Before we write
some wrapper code to actually use these, we’re going to do everything backwards so that we can
also extract hidden messages from previously encoded PNG files.

Decoding messages from image files

First we need a function that can turn a binary string back into readable text. As before, we’ll go via
base64 for better compatability. Add the following function to the bottom of the main.py file.

Hiding messages in images: steganography with Python and Repl.it 258

1 def decode_message_from_bytestring(bytestring):

2 bytestring = bytestring.split(ENDOFMESSAGE)[0]

3 message = int(bytestring, 2).to_bytes(len(bytestring) // 8, byteorder='big')

4 message = base64.decodebytes(message).decode("utf8")

5 return message

Remember how we added a special ENDOFMESSAGE delimiter above? Here we first split our string on
that so we don’t look for text in random data (pixels from the unmodified part of the image) and
then go backwards through our encoding pipe: first to base64 and then to text.

We also need a way to extract the bytestring from an image. Add the following function to main.py

to do this.

1 def decode_pixels(pixels):

2 bytestring = []

3 for row in pixels:

4 for c in row:

5 bytestring.append(str(c % 2))

6 bytestring = ''.join(bytestring)

7 message = decode_message_from_bytestring(bytestring)

8 return message

Once again, this is just the reverse of what we did before. We grab the remainder of each value to
get 1 for each odd value and 0 for each even one and keep them in a string. We then call our decode
function to get the plaintext.

That’s it for our encoding and decoding functions; next we’ll put everything together in our main()
function.

Adding a command line wrapper script

At this point, we could create a web application with a UI for people to add text to their images.
Given the fact that people who want to do steganography probably won’t trust a web application
with their data, we’ll rather create a command line application that people can run on their own
machines.

Add the following to the top of your main.py file, right below the imports.

Hiding messages in images: steganography with Python and Repl.it 259

1 PROMPT = """

2 Welcome to basic steganography. Please choose:

3

4 1. To encode a message into an image

5 2. To decode an image into a message

6 q. To exit

7 """

Now let’s write the main() function that puts it all together. Add the following to the end of the
main.py file.

1 def main():

2 print(PROMPT)

3 user_inp = ""

4 while user_inp not in ("1", "2", "q"):

5 user_inp = input("Your choice: ")

6

7 if user_inp == "1":

8 in_image = input("Please enter filename of existing PNG image: ")

9 in_message = input("Please enter the message to encode: ")

10

11 print("-ENCODING-")

12 pixels = get_pixels_from_image(in_image)

13 bytestring = encode_message_as_bytestring(in_message)

14 epixels = encode_pixels_with_message(pixels, bytestring)

15 write_pixels_to_image(epixels, in_image + "-enc.png")

16

17 elif user_inp == "2":

18 in_image = input("Please enter the filename of an existing PNG image: ")

19 print("-DECODING-")

20 pixels = get_pixels_from_image(in_image)

21 print(decode_pixels(pixels))

22

23 if __name__ == "__main__":

24 main()

The main() function above creates a prompt flow for the user to interact with the program.
Depending on the input from the user, the program will call the relevant functions in order to either
encode or decode a message. We also included a q for the user to close the program.

Hiding messages in images: steganography with Python and Repl.it 260

Where next?

If you have followed along you’ll have your own repl to expand; if not you can fork our repl²⁰⁵ and
work from there.
²⁰⁵https://repl.it/@ritza/python-steganography

https://repl.it/@ritza/python-steganography
https://repl.it/@ritza/python-steganography

Build a 2D Platform Game with
PyGame and Repl.it
In chapter 7(Building a game with PyGame) we introduced graphical game development with
PyGame, covering how to develop a 2D game with animated sprites and user interaction. In this
tutorial, we’ll go a step further and create a 2D platformer, where you can have an alien walk and
jump around a room full of boxes. The previous PyGame tutorial is not a prerequisite for trying this
one.

We’re going to focus on basic animation and movement to create a solid base from which you can
continue on to build an entire platform game, complete with enemies, power-ups and multiple levels.

Getting Started

Create a new repl and select “PyGame” from the language dropdown.

Build a 2D Platform Game with PyGame and Repl.it 262

You’ll see “Python3 with PyGame” displayed in the default console and a separate pane in the Repl.it
IDE where you will be able to see and interact with the game you will create.

Before we start writing code, we’re going to need a few sprites, which we’ve made available here²⁰⁶.
Extract this ZIP file and add the files inside to your repl using the upload file function. You can
select multiple files to upload at once. Your repl’s file pane should now look like this:

²⁰⁶/tutorial-files/2d-platform-game/2d-platform-game-sprites.zip

/tutorial-files/2d-platform-game/2d-platform-game-sprites.zip
/tutorial-files/2d-platform-game/2d-platform-game-sprites.zip

Build a 2D Platform Game with PyGame and Repl.it 263

In this tutorial, we will be gradually building up the main.py file, adding code in different parts of
the file as we go along. Each code snippets will contain some existing code to give you an idea of
where in the file the new additions should be placed. The line # ...will be used to represent existing

Build a 2D Platform Game with PyGame and Repl.it 264

code that has been left out for brevity.

Setting up the scaffolding

We will start with the following code in main.py, which draws a black screen:

1 import pygame

2

3 WIDTH = 400

4 HEIGHT = 300

5 BACKGROUND = (0, 0, 0)

6

7 def main():

8 pygame.init()

9 screen = pygame.display.set_mode((WIDTH, HEIGHT))

10 clock = pygame.time.Clock()

11

12 while True:

13 screen.fill(BACKGROUND)

14 pygame.display.flip()

15

16 clock.tick(60)

17

18 if __name__ == "__main__":

19 main()

At the top of the file, we import pygame. Following that, we set the width and height of the screen in
pixels, and the background color. This last value is an RGB²⁰⁷ tuple, and will make our background
black. To use a white background instead, we would write (255, 255, 255).

Then, in the main method, we initiate PyGame, create both the screen and the clock, and start the
game loop, which is this code:

1 while True:

2 screen.fill(BACKGROUND)

3 pygame.display.flip()

4

5 clock.tick(60)

The game loop is where everything happens. Because our game runs in real time, our code needs to
constantly poll for the user’s keystrokes and mouse movements, and constantly redraw the screen in

²⁰⁷https://www.google.com/search?q=rgb+color+picker

https://www.google.com/search?q=rgb+color+picker
https://www.google.com/search?q=rgb+color+picker

Build a 2D Platform Game with PyGame and Repl.it 265

response to those keystrokes and mouse movements, and to other events²⁰⁸ in the game. We achieve
this with an infinite while loop. PyGame uses the final clock.tick(60) line in this loop to adjust the
game’s framerate in line with how long each iteration of the loop takes, in order to keep the game
running smoothly.

Now let’s draw something on this black screen. Our game is going to have two sprites: an alien,
which will be the player, and a box. To avoid code duplication, let’s create a Sprite parent class
before we create either of those. This class will inherit from the pygame.sprite.Sprite class, which
gives us useful methods for collision detection – this will become important later on.

1 class Sprite(pygame.sprite.Sprite):

2 def __init__(self, image, startx, starty):

3 super().__init__()

4

5 self.image = pygame.image.load(image)

6 self.rect = self.image.get_rect()

7

8 self.rect.center = [startx, starty]

9

10 def update(self):

11 pass

12

13 def draw(self, screen):

14 screen.blit(self.image, self.rect)

15

16 def main():

As this class will be the parent for all other objects in our game, we’re keeping it quite simple. It has
three methods:

• __init__, which will create the sprite with a given image and a PyGame rectangle²⁰⁹ based on
that image. This rectangle will initially be placed at the position specified by startx and starty.
The sprite’s rectangle is what PyGame will use for sprite movement and collision detection.

• update, which we’ll use in child classes to handle events, such as key presses, gravity and
collisions.

• draw, which we use to draw the sprite. We do this by blitting²¹⁰ it onto the screen.

Now we can create our Player and Box objects as child classes of Sprite:

²⁰⁸https://www.pygame.org/docs/ref/event.html
²⁰⁹https://www.pygame.org/docs/ref/rect.html
²¹⁰https://en.wikipedia.org/wiki/Bit_blit

https://www.pygame.org/docs/ref/event.html
https://www.pygame.org/docs/ref/rect.html
https://en.wikipedia.org/wiki/Bit_blit
https://www.pygame.org/docs/ref/event.html
https://www.pygame.org/docs/ref/rect.html
https://en.wikipedia.org/wiki/Bit_blit

Build a 2D Platform Game with PyGame and Repl.it 266

1 class Sprite(pygame.sprite.Sprite):

2 # ...

3 class Player(Sprite):

4 def __init__(self, startx, starty):

5 super().__init__("p1_front.png", startx, starty)

6

7 class Box(Sprite):

8 def __init__(self, startx, starty):

9 super().__init__("boxAlt.png", startx, starty)

10

11 def main():

We’ll add more code to the player later, but first let’s draw these sprites on the screen.

Drawing the sprites

Let’s go back to our main function and create our sprites. We’ll start with the player:

1 def main():

2 pygame.init()

3 screen = pygame.display.set_mode((WIDTH, HEIGHT))

4 clock = pygame.time.Clock()

5

6 player = Player(100, 200)

Then we need to put boxes under the player’s feet. As we will be placing multiple sprites, we’ll create
a PyGame sprite group²¹¹ to put them in.

1 player = Player(100, 200)

2

3 boxes = pygame.sprite.Group()

Our box sprites are 70 pixels wide, and we need to span over the screen width of 400 pixels. We can
do this in a for loop using Python’s range²¹²:

²¹¹https://www.pygame.org/docs/ref/sprite.html#pygame.sprite.Group
²¹²https://docs.python.org/3/library/functions.html#func-range

https://www.pygame.org/docs/ref/sprite.html#pygame.sprite.Group
https://docs.python.org/3/library/functions.html#func-range
https://www.pygame.org/docs/ref/sprite.html#pygame.sprite.Group
https://docs.python.org/3/library/functions.html#func-range

Build a 2D Platform Game with PyGame and Repl.it 267

1 player = Player(100, 200)

2

3 boxes = pygame.sprite.Group()

4 for bx in range(0,400,70):

5 boxes.add(Box(bx,300))

Now we need to go back to the game loop and add some code to make things happen. First, we’ll
have PyGame put new events on the event queue, and then we’ll call the player’s update function.
This function will handle the events²¹³ generated by pygame.event.pump().

1 while True:

2 pygame.event.pump()

3 player.update()

4 # ...

For a more complex game, we would want to loop through a number of sprites and call each one’s
update method, but for now just doing this with the player is sufficient. Our boxes won’t have any
dynamic behavior, so there’s no need to call their update methods.

In contrast to update, we need all our sprites to draw themselves. After drawing the background,
we’ll add a call to the player’s drawmethod. To draw the boxes, we can call PyGame’s Group.draw²¹⁴
on our boxes group.

1 while True:

2 pygame.event.pump()

3 player.update()

4

5 # Draw loop

6 screen.fill(BACKGROUND)

7 player.draw(screen)

8 boxes.draw(screen)

9 pygame.display.flip()

10

11 clock.tick(60)

Our game loop is now set up to update and draw every sprite in the game in each cycle of the game
loop. If you run the game now, you should see both the player and the line of boxes on the screen.

²¹³https://www.pygame.org/docs/ref/event.html
²¹⁴https://www.pygame.org/docs/ref/sprite.html#pygame.sprite.Group.draw

https://www.pygame.org/docs/ref/event.html
https://www.pygame.org/docs/ref/sprite.html#pygame.sprite.Group.draw
https://www.pygame.org/docs/ref/event.html
https://www.pygame.org/docs/ref/sprite.html#pygame.sprite.Group.draw

Build a 2D Platform Game with PyGame and Repl.it 268

Next, we’re going to add some user interaction.

Making the Player Walk

Let’s return to the Player object andmake itmobile.We’ll move the player using pygame.Rect.move_-
ip, which moves a given rectangle by a given vector. This will be wrapped in a move method, to
simplify our code. Create this method now:

1 class Player(Sprite):

2 # ...

3 def move(self, x, y):

4 self.rect.move_ip([x,y])

Now that we have a way tomove the player, it’s time to add an updatemethod so that this movement
can be triggered by key presses. Add an empty update method now:

Build a 2D Platform Game with PyGame and Repl.it 269

1 class Player(Sprite):

2 def __init__(self, startx, starty):

3 super().__init__("p1_front.png", startx, starty)

4

5 def update(self):

6 pass

7

8 def move(self, x, y):

9 self.rect.move_ip([x,y])

PyGame provides a couple of different ways to check the state of the keyboard. By default, its event
queue collects KEY_DOWN and KEY_UP events when particular keys are pressed and released. Using a
KEY_DOWN event to move the player seems like the logical thing to do, but because the event is only
triggered in same update loop in which the key is first pressed, this would force us to rapidly tap an
arrow key to keep moving in a single direction.

We need a way to move the player whenever an arrow key is held down, not just after it’s
pressed. So instead of relying on events, we will query the current status of all keyboard keys with
pygame.key.get_pressed():

1 def update(self):

2 # check keys

3 key = pygame.key.get_pressed()

This method returns a tuple of 0s and 1s showing the pressed status of each key on the keyboard.
We can thus detect whether the left or right arrow key is currently pressed by indexing the tuple
with PyGame’s keyboard constants²¹⁵, like so:

1 def update(self):

2 # check keys

3 key = pygame.key.get_pressed()

4 if key[pygame.K_LEFT]:

5 self.move(-1,0)

6 elif key[pygame.K_RIGHT]:

7 self.move(1,0)

Run the game. You should now be able to move the player left and right, albeit very slowly. Let’s
speed things up and reduce our code’s reliance on magic numbers at the same time by giving the
player a speed variable.

²¹⁵https://www.pygame.org/docs/ref/key.html

https://www.pygame.org/docs/ref/key.html
https://www.pygame.org/docs/ref/key.html

Build a 2D Platform Game with PyGame and Repl.it 270

1 class Player(Sprite):

2 def __init__(self, startx, starty):

3 super().__init__("p1_front.png", startx, starty)

4

5 self.speed = 4

6

7 def update(self):

8 # check keys

9 key = pygame.key.get_pressed()

10 if key[pygame.K_LEFT]:

11 self.move(-self.speed,0)

12 elif key[pygame.K_RIGHT]:

13 self.move(self.speed,0)

Right now the player glides from side to side, but we have already uploaded images for a walk
cycle²¹⁶ animation, so let’s implement that now. First, we’ll add some image loading code to our
player’s __init__ method:

1 def __init__(self, startx, starty):

2 super().__init__("p1_front.png", startx, starty)

3 self.stand_image = self.image

4

5 self.walk_cycle = [pygame.image.load(f"p1_walk{i:0>2}.png") for i in range(1\

6 ,12)]

7 self.animation_index = 0

8 self.facing_left = False

9

10 self.speed = 4

In this code, we first designate our initial alien image as stand_image. This will allow us to use it
for the player when he’s standing still. We then load our walking images into a list called walk_-

cycle, using Python’s string formatting²¹⁷ to get the correct filename format (p1_walk01.png -> p1_-

walk11.png). We then create self.animation_index, which will record which frame of the walk
cycle the player is on, and self.facing_left which will help us to flip the right-facing walking
images when the player is walking left.

Now let’s implement the actual animation. Create a new method called walk_animation:

²¹⁶https://en.wikipedia.org/wiki/Walk_cycle
²¹⁷https://docs.python.org/3/library/string.html#string-formatting

https://en.wikipedia.org/wiki/Walk_cycle
https://en.wikipedia.org/wiki/Walk_cycle
https://docs.python.org/3/library/string.html#string-formatting
https://en.wikipedia.org/wiki/Walk_cycle
https://docs.python.org/3/library/string.html#string-formatting

Build a 2D Platform Game with PyGame and Repl.it 271

1 class Player(Sprite):

2 # ...

3 def walk_animation(self):

4 self.image = self.walk_cycle[self.animation_index]

5 if self.facing_left:

6 self.image = pygame.transform.flip(self.image, True, False)

7

8 if self.animation_index < len(self.walk_cycle)-1:

9 self.animation_index += 1

10 else:

11 self.animation_index = 0

Here we’re setting the player’s current image to the frame of the walk cycle we’re currently on. If
the player is facing left, we use pygame.transform.flip to horizontally flip his sprite (the last two
arguments are for horizontal and vertical flipping, respectively). Then we animate the player by
incrementing the animation_index, unless the animation is in its penultimate frame, in which case
we return to the start of the animation.

Let’s add this to our update method now:

1 def update(self):

2 # ...

3 # check keys

4 key = pygame.key.get_pressed()

5 if key[pygame.K_LEFT]:

6 self.facing_left = True

7 self.walk_animation()

8 self.move(-self.speed,0)

9 elif key[pygame.K_RIGHT]:

10 self.facing_left = False

11 self.walk_animation()

12 self.move(self.speed,0)

13 else:

14 self.image = self.stand_image

If we’re moving left or right, we set self.facing_left appropriately and call self.walk_animation.
Otherwise, we set the player’s image to self.stand_image.

Run the game now to see the player’s walk cycle in motion. After that, it’s time to make him jump.

Making the Player Jump

For our player to be able to jump, we need to implement four things:

Build a 2D Platform Game with PyGame and Repl.it 272

1. Upward motion triggered by the up arrow key.
2. Gravity, to bring the player back down after reaching the top of his jump.
3. Collision detection, so the player doesn’t fall through the ground.
4. A jumping animation.

Triggering the jump

To simply make the player move up, we can just add another elif, like so:

1 def update(self):

2 # ...

3 if key[pygame.K_LEFT]:

4 self.facing_left = True

5 self.walk_animation()

6 self.move(-self.speed,0)

7 elif key[pygame.K_RIGHT]:

8 self.facing_left = False

9 self.walk_animation()

10 self.move(self.speed,0)

11 elif key[pygame.K_UP]:

12 self.move(0,-self.speed)

13 else:

14 self.image = self.stand_image

If you try the game now, you should notice a couple of problems with this approach. Besides the
lack of gravity, we can only jump straight up, and must release the left and right arrow keys before
we may do so. Much of the gameplay in platformers is reliant on the player’s ability to jump to the
left or right, so this won’t do. To fix this, we’ll change our last elif to a separate if statement:

1 if key[pygame.K_LEFT]:

2 self.facing_left = True

3 self.walk_animation()

4 self.move(-self.speed,0)

5 elif key[pygame.K_RIGHT]:

6 self.facing_left = False

7 self.walk_animation()

8 self.move(self.speed,0)

9 else:

10 self.image = self.stand_image

11

12 if key[pygame.K_UP]:

13 self.move(0,-self.speed)

Build a 2D Platform Game with PyGame and Repl.it 273

We also probably want to be able to jump at a different speed to our walking pace, so let’s define
another variable and use it.

1 def __init__(self, startx, starty):

2 # ...

3 self.speed = 4

4 self.jumpspeed = 20

5

6 def update(self):

7 # ...

8 if key[pygame.K_UP]:

9 self.move(0,-self.jumpspeed)

That’s better, but now we really need some gravity!

Adding gravity

Up until now, we’ve had only a single operation manipulating our horizontal or vertical speed per
update loop. With the addition of gravity, this will change, so we need to restructure our code to
calculate our net horizontal and vertical movement before calling move. Let’s change the update

function like so:

1 def update(self):

2 hsp = 0 # horizontal speed

3 vsp = 0 # vertical speed

4

5 # check keys

6 key = pygame.key.get_pressed()

7 if key[pygame.K_LEFT]:

8 self.facing_left = True

9 self.walk_animation()

10 hsp = -self.speed

11 elif key[pygame.K_RIGHT]:

12 self.facing_left = False

13 self.walk_animation()

14 hsp = self.speed

15 else:

16 self.image = self.stand_image

17

18 if key[pygame.K_UP]:

19 vsp = -self.jumpspeed

20

Build a 2D Platform Game with PyGame and Repl.it 274

21 # movement

22 self.move(hsp,vsp)

We’ve added two variables, hsp and vsp, to represent our horizontal speed and vertical speed. Instead
of calling move when each key is pressed, we work with these variables throughout the update

method and then pass their final values into a single move call at the end.

But wait! It makes sense for horizontal speed to be set to 0 at the start of every update loop, because
it is directly controlled by the player’s key presses. When the left arrow is held down, the player
moves left at a speed of 4 pixels per loop; when the left arrow is released, the player instantly stops.
Vertical speed will be less controllable – while pressing the up arrow will initiate a jump, releasing
it should not stop the player in mid-air. Therefore, vertical speed must persist between loops.

We can accomplish this by moving the vsp definition into __init__ and making it an instance
variable.

1 def __init__(self, startx, starty)

2 # ...

3 self.vsp = 0 # vertical speed

4

5 def update(self):

6 hsp = 0 # horizontal speed

7 # ...

8 if key[pygame.K_UP]:

9 self.vsp = -self.jumpspeed

10

11 # movement

12 self.move(hsp,self.vsp)

Now we can implement gravity. We’ll do this by adding a small constant to the player’s vertical
speed (vsp) until it reaches terminal velocity²¹⁸.

1 def __init__(self, startx, starty)

2 # ...

3 self.gravity = 1

4

5 def update(self):

6 # ...

7 if key[pygame.K_UP]:

8 self.vsp = -self.jumpspeed

9

10 # gravity

²¹⁸https://en.wikipedia.org/wiki/Terminal_velocity

https://en.wikipedia.org/wiki/Terminal_velocity
https://en.wikipedia.org/wiki/Terminal_velocity

Build a 2D Platform Game with PyGame and Repl.it 275

11 if self.vsp < 10: # 9.8 rounded up

12 self.vsp += self.gravity

13

14 # movement

15 self.move(hsp,self.vsp)

Start up the game now, and the player will fall straight down, through the ground and off the screen.
Gravity’s working, but we need somewhere for the player to land.

Adding collision detection

Collision detection is a key element of most graphical games. In PyGame, the bulk of collision
detection involves checking whether rectangles intersect with each other. Luckily, PyGame provides
a number of useful built-ins for doing this, so we won’t have to think too much about the internal
workings of collisions.

Let’s add some collision detection now, near the top of our update method. We’ll create a variable
called onground and set it to the result of pygame.sprite.spritecollideany().

1 def update(self):

2 hsp = 0 # horizontal speed

3 onground = pygame.sprite.spritecollideany(self, boxes)

This PyGame method takes two arguments: a single sprite and a group of sprites. It returns whether
the sprite given as the first argument, i.e. the player, has a collision with any of the sprites in the
group given as the second argument, i.e. the boxes. So we’ll know that the player is on a box when
it returns True.

We can pass the boxes group into the player’s update method by making a couple of code changes:

1 def update(self, boxes):

2 hsp = 0 # horizontal speed

3 onground = pygame.sprite.spritecollideany(self, boxes)

4 # ...

5

6 def main():

7 # ...

8 while True:

9 pygame.event.pump()

10 player.update(boxes)

Now that we can tell whether the player is on the ground, we can prevent jumping in mid-air by
adding a condition to our jump code:

Build a 2D Platform Game with PyGame and Repl.it 276

1 def update(self, boxes):

2 # ...

3 if key[pygame.K_UP] and onground:

4 self.vsp = -self.jumpspeed

To stop the player from falling through the ground, we’ll add the following code to our gravity
implementation:

1 def update(self, boxes):

2 # ...

3 # gravity

4 if self.vsp < 10 and not onground: # 9.8: rounded up

5 self.vsp += self.gravity

6

7 # stop falling when the ground is reached

8 if self.vsp > 0 and onground:

9 self.vsp = 0

Adding a jumping animation

Lastly, we’ll use our last alien image (p1_jump.png) to give our player a jumping animation. First
create self.jump_image in __init__:

1 def __init__(self, startx, starty):

2 super().__init__("p1_front.png", startx, starty)

3 self.stand_image = self.image

4 self.jump_image = pygame.image.load("p1_jump.png")

5 # ...

Then create the following Player method:

1 def jump_animation(self):

2 self.image = self.jump_image

3 if self.facing_left:

4 self.image = pygame.transform.flip(self.image, True, False)

Our jump animation only has one frame, so the code is much simpler than what we used for
our walking animation. To trigger this method when the player is in the air, alter the gravity
implementation like so:

Build a 2D Platform Game with PyGame and Repl.it 277

1 def update(self, boxes):

2 # ...

3 # gravity

4 if self.vsp < 10 and not onground: # 9.8 rounded up

5 self.jump_animation()

6 self.vsp += self.gravity

Run the game, and you should be able to run and jump! Be careful not to fall off the edge.

Refining the Game

At this point, we have our gameworking on a basic level, but it could use some refinements. First, the
jumping is quite unresponsive to user input: pressing the up arrow for any length of time results in
the same size jump. Second, our collision detection will only prevent the player from falling through
the floor, not walking through walls or jumping through the ceiling.

We’re going to iterate on our code to fix both of these shortcomings.

Making jumps variable

It would be nice if the player could control the height of their jump by holding the jump key down
for different lengths of time. This is fairly simple to implement – we just need a way to reduce the
speed of a jump if the player releases the jump key while the player is still moving up. Add the
following code to the player’s __init__ method.

1 class Player(Sprite):

2 def __init__(self, startx, starty):

3 # ...

4 self.min_jumpspeed = 3

5 self.prev_key = pygame.key.get_pressed()

Here we’ve added a prev_key instance variable that will track the state of the keyboard in the
previous update loop, and a min_jumpspeed variable, which will be the smallest jump we’ll allow
the player to do, by just tapping the jump key.

Now let’s add variable jumping to the update method, between the code that handles the up arrow
key and the code that handles gravity:

Build a 2D Platform Game with PyGame and Repl.it 278

1 def update(self, boxes)

2 # ...

3 if key[pygame.K_UP] and onground:

4 self.vsp = -self.jumpspeed

5

6 # variable height jumping

7 if self.prev_key[pygame.K_UP] and not key[pygame.K_UP]:

8 if self.vsp < -self.min_jumpspeed:

9 self.vsp = -self.min_jumpspeed

10

11 self.prev_key = key

12

13 # gravity

14 if self.vsp < 10: # 9.8 rounded up

15 self.vsp += self.gravity

The if statement we’ve just added will evaluate to True if the up arrow key was pressed in the
previous loop but is not longer pressed, i.e. it has been released. When that happens, we cut off the
player’s jump by reducing its speed to the min_jumpspeed. We then set self.prev_key to the current
keyboard state in preparation for the next loop.

Try the game now, and you should notice a different height of jump when lightly tap the up arrow
key versus when you hold it down. Play around with the value of min_jumpspeed and see what
difference it makes.

Refining collision detection

As mentioned above, the only collision detection we’ve implemented applies to the ground beneath
the player’s feet, so he will be able to walk through walls and jump through ceilings. See this for
yourself by adding some boxes above and next to the player in the main method.

1 def main():

2 # ...

3 boxes = pygame.sprite.group()

4 for bx in range(0,400,70):

5 boxes.add(Box(bx,300))

6

7 boxes.add(Box(330,230))

8 boxes.add(Box(100,70))

Build a 2D Platform Game with PyGame and Repl.it 279

Another issue that you may have already noticed is that the player sinks into the ground after some
jumps – this results from the imprecision of our collision detection.

We’re going to fix these problems by making a subtle change to how we deal with collisions with
boxes. Rather than deciding that we’re on the ground when the player sprite is in collision with a
box, we’ll check whether the player is 1 pixel above a collision with a box. We’ll then apply the same
principle for left, right and up, stopping the player just before a collision.

First, let’s give the player a check_collision method to make these checks:

1 class Player(Sprite):

2 # ...

3 def check_collision(self, x, y, boxes):

4 self.rect.move_ip([x,y])

5 collide = pygame.sprite.spritecollideany(self, boxes)

6 self.rect.move_ip([-x,-y])

7 return collide

Here, we’re moving the player by a specified amount, checking for a collision, and then moving the
player back. This back and forth movement happens before the player is drawn to the screen, so the

Build a 2D Platform Game with PyGame and Repl.it 280

user won’t notice anything.

Let’s change our onground check to use this method:

1 def update(self, boxes):

2 hsp = 0

3 onground = self.check_collision(0, 1, boxes)

Run the game now, and you may be able to notice a very slight difference in how the player stands
on the ground from before.

This doesn’t yet solve our horizontal and upward collisions problems, though. For that, we’ll need
to implement our new check_collision method directly into the player’s move method. The first
thing we’ll need to do is prepare the x and y parameters for additional processing:

1 def move(self, x, y):

2 dx = x

3 dy = y

4 self.rect.move_ip([dx,dy])

Then we’re going to check for collisions, so we need to start passing boxes into move. We’re going
to do this for x and y separately, starting with y. We’ll check for a collision after moving dy pixels
vertically, decrementing dy until we no longer collide with a box:

1 def update(self, boxes):

2 # ...

3 # movement

4 self.move(hsp, self.vsp, boxes)

5

6 def move(self, x, y, boxes):

7 dx = x

8 dy = y

9

10 while self.check_collision(0, dy, boxes):

11 dy -= 1

12

13 self.rect.move_ip([dx,dy])

But wait! This code will only work as intended if we’re moving down and dy is positive. If dy is
negative, this will just move us further into a collision, not away from it. To fix this, we’ll need to
import numpy at the top of our file, so we can use numpy.sign.

Build a 2D Platform Game with PyGame and Repl.it 281

1 import pygame, numpy

2 # ...

numpy.sign takes an integer and returns 1 if it’s positive, -1 if it’s negative, and 0 if it’s 0. This is
exactly the functionality we need!

1 def move(self, x, y, boxes):

2 dx = x

3 dy = y

4

5 while self.check_collision(0, dy, boxes):

6 dy -= numpy.sign(dy)

7

8 self.rect.move_ip([dx,dy])

Now do the same for dx. As we’ve already figured out the appropriate dy for our movement, we’ll
include that in the collision check.

1 def move(self, x, y, boxes):

2 dx = x

3 dy = y

4

5 while self.check_collision(0, dy, boxes):

6 dy -= numpy.sign(dy)

7

8 while self.check_collision(dx, dy, boxes):

9 dx -= numpy.sign(dx)

10

11 self.rect.move_ip([dx,dy])

Run the game. The player should now stop when he runs into a wall or jumps into a ceiling.

Build a 2D Platform Game with PyGame and Repl.it 282

Where Next?

If you’d like to continue working on this game, you can find a large number of matching art assets
here²¹⁹. Try implementing some of these features:

• More jump refinements, such as jump grace time and input buffering²²⁰.
• Moving platforms.
• Slopes.
• Water and swimming mechanics.
• Hazards like spike pits and enemies who are also subject to gravity.
• Double jumping²²¹.

You can find our game repl and fork it here²²².

²¹⁹https://www.kenney.nl/assets/platformer-art-pixel-redux
²²⁰https://www.gamasutra.com/blogs/LisaBrown/20171005/307063/GameMaker_Platformer_Jumping_Tips.php
²²¹https://en.wikipedia.org/wiki/Glossary_of_video_game_terms#Double_jump
²²²https://repl.it/@ritza/2D-platform-game

https://www.kenney.nl/assets/platformer-art-pixel-redux
https://www.gamasutra.com/blogs/LisaBrown/20171005/307063/GameMaker_Platformer_Jumping_Tips.php
https://en.wikipedia.org/wiki/Glossary_of_video_game_terms#Double_jump
https://repl.it/@ritza/2D-platform-game
https://www.kenney.nl/assets/platformer-art-pixel-redux
https://www.gamasutra.com/blogs/LisaBrown/20171005/307063/GameMaker_Platformer_Jumping_Tips.php
https://en.wikipedia.org/wiki/Glossary_of_video_game_terms#Double_jump
https://repl.it/@ritza/2D-platform-game

Build a 2D Platform Game with PyGame and Repl.it 283

Next Tutorial

Up next, we’ll learn a simple and flexible implementation of a static site generator. The tutorial will
walk you through advanced file handling and by the end of it you’ll have a fully functional SSG that
you can use as is or customise to add your desired functionality.

Create a static site generator with
Python and Replit
A static site generator (SSG) is a tool for building informational websites such as blogs and
documentation repositories. SSGs allow technical users to build websites that are faster and more
secure than ones running on dynamic platforms such as Wordpress, without having to write each
HTML page.

There are many SSGs out there already, such as Jekyll and Hugo, but many people opt to write their
own – either so that they fully understand it and can be more productive, or to meet custom needs.

After this tutorial, you’ll:

• Be able to build a simple but flexible SSG in Python in under 100 lines of code.
• Understand advanced file and directory handling.
• Know how to build a configurable tool for technical users.

*click to open gif²²³

At the end, you’ll have a full SSG that you can use as is or extend for your own requirements.

²²³https://docs.replit.com/images/tutorials/static-site-generator/generator_functionality.gif

https://docs.replit.com/images/tutorials/static-site-generator/generator_functionality.gif
https://docs.replit.com/images/tutorials/static-site-generator/generator_functionality.gif

Create a static site generator with Python and Replit 285

Building a proof of concept

A basic SSG takes in a list of Markdown²²⁴ files, converts them to HTML, and inserts them into
different predefined HTML templates. Beyond that, most SSGs have the concept of frontmatter²²⁵ to
define metadata such as title and publish date for each Markdown file. SSGs also usually have global
configuration files, containing general information about the site such as its name and domain.

Before we start dealing with files, we’re going to implement our SSG using strings. This will serve
as an initial proof of concept.

Setting up and defining the flow

We’ll start by defining themain functions we’ll use. Create a new Python repl and enter the following
code in main.py.

²²⁴https://en.wikipedia.org/wiki/Markdown
²²⁵https://jekyllrb.com/docs/front-matter/

https://en.wikipedia.org/wiki/Markdown
https://jekyllrb.com/docs/front-matter/
https://en.wikipedia.org/wiki/Markdown
https://jekyllrb.com/docs/front-matter/

Create a static site generator with Python and Replit 286

1 def load_config():

2 pass

3

4 def load_content_items():

5 pass

6

7 def load_templates():

8 pass

9

10 def render_site(config, content, templates):

11 pass

12

13 def main():

14 config = load_config()

15 content = load_content_items()

16 templates = load_templates()

17 render_site(config, content, templates)

18

19 main()

This skeleton defines the program flow:

• Load the global site configuration.
• Load the content files containing Markdown and frontmatter.
• Load the HTML templates.
• Render the site using everything we’ve loaded above.

Throughout this tutorial, we will keep to this flow, even as we expand and refine its individual
elements.

Parsing content and templates

Now we need to import some modules. At the top of main.py, enter the following line.

1 import markdown, jinja2, toml, re

All four of these modules are essentially parsers:

• markdown: This module will render Markdown.
• jinja2: The Jinja templating language, which we will use to create HTML templates that we
can enhance with Python-esque code.

Create a static site generator with Python and Replit 287

• toml: We will use TOML (Tom’s Obvious, Minimal Language) for post frontmatter and global
configuration.

• re: We’ll use Python’s regular expressions (regex) module for some additional, very light,
parsing not provided by the three packages above.

Now that we have our parsers, let’s add some content to parse. Add a TOML string for global site
configuration at the top of the main function.

1 def main():

2 config_string = """

3 title = "My blog"

4 """

For now, this just defines the title of our site. Change it to whatever you want. To load this config,
we’ll use toml.loads on its content. Go to the load_config function at the top of main.py and give
it the following parameter and content.

1 def load_config(config_string):

2 return toml.loads(config_string)

To use this function, go back to the main function and pass config_string to this line in the main
function.

1 config = load_config(config_string)

Now let’s create a couple of content strings below the config string. We’re going to format these
strings with a block of TOML metadata terminated by a row of five plus signs (+++++). The rest
of the string will contain Markdown-formatted text. Add this block of code below the definition of
config_string in the main function.

1 content_strings = ["""

2 title = "My first entry"

3 date = 2021-02-14T11:47:00+02:00

4 +++++

5

6 Hello, welcome to my **blog**

7 """,

8 """

9 title = "My second entry"

10 date = 2021-02-15T17:47:00+02:00

11 +++++

12

13 This is my second post.

14 """]

Create a static site generator with Python and Replit 288

We’ll parse these strings in our load_content_items function. Give the function a content_strings
parameter and add the following code.

1 def load_content_items(content_strings):

2 items = []

3 for item in content_strings:

4 frontmatter, content = re.split("^\s*\+\+\+\+\+\s*$", item, 1, re.MULTILINE)

5 item = toml.loads(frontmatter)

6 item['content'] = markdown.markdown(content)

7

8 items.append(item)

9

10 # sort in reverse chronological order

11 items.sort(key=lambda x: x["date"],reverse=True)

12

13 return items

Here we use a for loop to construct a list of items from our item strings. For each one, we split up
the frontmatter and content on a regular expression that will match a line of text containing five
plus signs. We pass in 1 as re.split’s maxsplit parameter to ensure that we only split on the first
matched line, and re.MULTILINE so that our regex will work correctly in a multiline string.

We then use toml.loads() to convert the frontmatter into a dictionary. Finally, we convert the
Markdown in content into HTML and add it to the dictionary we just created. The result will be a
dictionary that looks something like this:

1 {

2 'title': 'My first entry',

3 'date': datetime.datetime(2021, 2, 14, 11, 47, tzinfo=<toml.tz.TomlTz object at \

4 0x7f4032da6eb0>),

5 'content': '<p>Hello, welcome to my blog.</p>'

6 }

Finally, since this is a blog site, we’re sorting our items dictionary in reverse chronological order.
We do this by using Python’s list.sort method’s custom sort functionality to sort by each list
entry’s date value. The key parameter takes a function which it will pass each value into and use
the return value to sort the list. For brevity, we’ve created an in-line anonymous function using a
lambda expression²²⁶.

Back in our main function, let’s pass content_strings to the load_content_items function call.

²²⁶https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions

https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions

Create a static site generator with Python and Replit 289

1 content = load_content_items(content_strings)

Now let’s create a template string below the content strings. This is just some HTML with Jinja code
in {{ }} and {% %} blocks. Add this code block beneath the definition of content_strings in the
main function.

1 template_string = """

2 <!DOCTYPE html>

3 <html>

4 <body>

5 <h1>{{ config.title }}</h1>

6 {% for post in content %}

7 <article>

8 <h2>{{ post.title }}</h2>

9 <p>Posted at {{ post.date }}</p>

10 {{ post.content }}

11 </article>

12 {% endfor %}

13 </body>

14 </html>

15 """

Each of the values inside {{ }} blocks is something we’ve assembled in the preceding code:
config.title from the config strings, content from the content strings, and the individual values
inside the Jinja for loop from each item in the content list. Note that in Jinja, post.title is equivalent
to post["title"].

To load this template, we will add the following parameter and code to the load_templates function.

1 def load_templates(template_string):

2 return jinja2.Template(template_string)

We’ll also change the load_templates function invocation in the main function.

1 templates = load_templates(template_string)

Rendering the site

Now let’s populate the template with our config and content data. We’ll do this using the template’s
render() method. This method takes a list of keyword arguments which it will use to resolve the
variable references template’s {{ }} and {% %} blocks.

In the render_site function, add the following code:

Create a static site generator with Python and Replit 290

1 def render_site(config, content, template):

2 print(template.render(config=config, content=content))

As our render_site invocation in main already takes the correct arguments, we can run our code
now. The result should look like this:

1 <!DOCTYPE html>

2 <html>

3 <body>

4 <h1>My blog</h1>

5

6 <article>

7 <h2>My second entry</h2>

8 <p>Posted at 2021-02-15 17:47:00+02:00</p>

9 <p>This is my second post.</p>

10 </article>

11

12 <article>

13 <h2>My first entry</h2>

14 <p>Posted at 2021-02-14 11:47:00+02:00</p>

15 <p>Hello, welcome to my blog</p>

16 </article>

17

18 </body>

19 </html>

Create a static site generator with Python and Replit 291

We now have the core of our SSG. Modify the content of one of the content strings and the output
will change. Add new variables to each content file’s frontmatter and the template, and they will
propagate through without any changes to the Python code.

Next, let’s create and ingest some files.

Blog generator

First, we need to create a directory structure. In the file pane of your repl, create four directories:
content, content/posts, layout and static. Your file pane should now look like this:

We will put our Markdown files in content/posts, our Jinja files in layout and unprocessed files
like CSS stylesheets and images in static. We’re using content/posts so we can create different
content types later on, such as undated pages like “About”.

Creating input files

First, we’ll create our config file config.toml. In addition to the title value, we’ll give it a base URL
based on our repl’s URL.

config.toml

Create a static site generator with Python and Replit 292

1 title = "My blog"

2 baseURL = "https://YOUR-REPL-NAME-HERE.YOUR-REPLIT-USERNAME.repl.co"

Replace the all-caps text with the relevant values.

Now let’s put our content strings into post files. Create two files with the following content:

content/posts/first-post.md

1 title = "My first entry"

2 date = 2021-02-14T11:47:00+02:00

3 +++++

4

5 Hello, welcome to my **blog**.

content/posts/second-post.md

1 title = "My second entry"

2 date = 2021-02-15T17:47:00+02:00

3 +++++

4

5 This is my second post.

Make as many additional posts as you want. Just remember to give each one a title, correctly
formatted datestamp and some Markdown content. File names should be lowercase with no spaces,
ending in the .md file extension.

In contrast to our proof of concept, this will be a multi-page website, so we’re going to create three
HTML files in our layout directory: index.html, post.html and macros.html.

• index.html will be the template for our homepage, showing a list of blog posts in reverse
chronological order.

• post.html will be the template for post pages, containing their rendered Markdown content.
• macros.html will not be a template, but a container file for Jinja macros²²⁷. These are reusable
snippets of HTML that we can use in our templates.

Create three files and populate them as follows.

layout/index.html

²²⁷https://jinja.palletsprojects.com/en/2.10.x/templates/#macros

https://jinja.palletsprojects.com/en/2.10.x/templates/#macros
https://jinja.palletsprojects.com/en/2.10.x/templates/#macros

Create a static site generator with Python and Replit 293

1 <!DOCTYPE html>

2 <html>

3 {% import "macros.html" as macros %}

4 {{ macros.head(config.title) }}

5 <body>

6 <h1>Posts</h1>

7

8 {% for post in content.posts %}

9 {{ post.title }} (posted at {{ post.dat\

10 e }})

11 {% endfor %}

12

13 </body>

14 </html>

layout/post.html

1 <!DOCTYPE html>

2 <html>

3 {% import "macros.html" as macros %}

4 {{ macros.head(this.title) }}

5 <body>

6 <h1>{{ this.title }}</h1>

7 <p>Posted at {{ this.date }}</p>

8 {{ this.content }}

9 <p>Return to the homepage ⤾</p>

10 </body>

11 </html>

(⤾ is the HTML entity²²⁸ for “�”.)

layout/macros.html

1 {% macro head(page_title) -%}

2 <head>

3 <title>{{ page_title }}</title>

4 <link rel="stylesheet" href="/css/style.css">

5 </head>

6 {% endmacro -%}

The only macro we’ve defined is head, which will generate an HTML <head> tag containing an
appropriate title for the page as well as a link to our website’s stylesheet. Let’s create that now.

²²⁸https://developer.mozilla.org/en-US/docs/Glossary/Entity

https://developer.mozilla.org/en-US/docs/Glossary/Entity
https://developer.mozilla.org/en-US/docs/Glossary/Entity

Create a static site generator with Python and Replit 294

In the static directory, create a subdirectory called css. Then create a file called style.css in this
subdirectory and add the following code.

static/css/style.css

1 h1 {

2 font-family: sans-serif;

3 margin-top: 2em;

4 }

5

6 body {

7 font-family: serif;

8 margin: 0 auto;

9 max-width: 40em;

10 line-height: 1.2em;

11 }

These are a couple of small style adjustments to improve readability and differentiate our site from
an unstyled page. Feel free to add your own touches.

Ingesting input files

Now that we’ve created our input files, let’s write some code in main.py to read them and create our
website. To do this, we’ll be iterating our proof-of-concept code.

First, at the top of the file, let’s import some new modules for dealing with reading and writing files
and directories. Add the second line below the first in main.py.

1 import jinja2, markdown, toml, re

2 import os, glob, pathlib, shutil, distutils.dir_util

Then delete the config_string, content_strings and template_string definitions from the main

function.

Ingesting site configuration

First, let’s ingest the configuration file. Change the load_config function as follows.

1 def load_config(config_filename):

2 with open(config_filename, 'r') as config_file:

3 return toml.loads(config_file.read())

Now change this line in the main function:

Create a static site generator with Python and Replit 295

1 config = load_config(config_string)

To this:

1 config = load_config("config.toml")

Ingesting posts

Next, we will ingest the content/posts directory. Change the content of the load_content_items

function as follows.

1 def load_content_items(content_directory):

2 items = []

3 for fn in glob.glob(f"{content_directory}/*.md"):

4 with open(fn, 'r') as file:

5 frontmatter, content = re.split("^\+\+\+\+\+$", file.read(), 1, re.MULTI\

6 LINE)

7 item = toml.loads(frontmatter)

8 item['content'] = markdown.markdown(content)

9

10 items.append(item)

11

12 # sort in reverse chronological order

13 items.sort(key=lambda x: x["date"],reverse=True)

14

15 return items

Instead of looping through a list of strings, we’re now looping through all files ending in .md in the
content/posts directory using the glob method and parsing their contents.

Since we’re now building a real site with multiple pages, we’ll need to add a couple of additional
attributes to our post dictionary. Namely, slug and url.

• slug will be the name of the post’s Markdown file without the .md extension.
• url will be a partial URL including the post’s date and slug. For the first post, it will look like
this: /2021/02/14/first-post/

Let’s create the slug by using os.path.basename to get our file’s filename without its full path (i.e.
first-post.md rather than content/posts/first-post.md). Then we’ll use os.path.splitext on
the result to split the filename and extension, and we’ll discard the extension. Add the following
line to the for loop, below where we define item['content'].

Create a static site generator with Python and Replit 296

1 item['slug'] = os.path.splitext(os.path.basename(file.name))[0]

We’ll then use this slug along with our post’s date to construct the full URL. We’ll use Python’s
string formatting²²⁹ to ensure correct zero-padding of single-digit values for months and days. Add
this line below the one we just added:

1 item['url'] = f"/{item['date'].year}/{item['date'].month:0>2}/{item['date'].day:0>2}\

2 /{item['slug']}/"

Now we can update our function invocation in main. Change this line:

1 content = load_content_items(content_strings)

To this:

1 content = { "posts": load_content_items("content/posts") }

Using a dictionary instead of a plain list will allow us to add additional content types in a later
section of this tutorial.

Ingesting templates

Now that we have a list of posts, let’s ingest our templates so we have somewhere to put them.
Jinja works quite differently from the file system and from strings, so we’re going to change our
load_templates function to create a Jinja Environmentwith a FileSystemLoader that knows to look
for templates in a particular directory. Change the function code as follows.

1 def load_templates(template_directory):

2 file_system_loader = jinja2.FileSystemLoader(template_directory)

3 return jinja2.Environment(loader=file_system_loader)

Then, in the main function, change this line:

1 template = load_templates(template_string)

To this:

1 environment = load_templates("layout")

In the next section, we’ll pass this environment to our render_site function where we’ll load
individual templates as we need them.

²²⁹https://docs.python.org/3/library/string.html#string-formatting

https://docs.python.org/3/library/string.html#string-formatting
https://docs.python.org/3/library/string.html#string-formatting

Create a static site generator with Python and Replit 297

Writing output files

Now let’s render the site by writing some output files. We’ll be using a directory named public for
this, but you don’t need to create this in your file pane – we’ll do so in code. Go to the render_site
function and replace its code with the following (remember to change the function parameters).

1 def render_site(config, content, environment, output_directory):

2 if os.path.exists(output_directory):

3 shutil.rmtree(output_directory)

4 os.mkdir(output_directory)

We do two things here: remove the output directory and all of its content if it exists, and create a
fresh output directory. This will avoid errors when running our code multiple times.

Now let’s write our home page by adding this code to the bottom of the function.

1 # Homepage

2 index_template = environment.get_template("index.html")

3 with open(f"{output_directory}/index.html", 'w') as file:

4 file.write(index_template.render(config=config,content=content))

Here we use our Jinja environment to load the template at layout/index.html. We then open the
public/index.html file and write to it the results of rendering index_templatewith our config and
content dictionaries passed in.

The code for writing individual post files is a bit more complex. Add the for loop below to the bottom
of the function.

1 # Post pages

2 post_template = environment.get_template("post.html")

3 for item in content["posts"]:

4 path = f"{output_directory}/{item['url']}"

5 pathlib.Path(path).mkdir(parents=True, exist_ok=True)

6 with open(path+"index.html", 'w') as file:

7 file.write(post_template.render(this=item, config=config, content=content))

First we create the directories necessary to show our post URLs. To display a URL such as
2021/02/14/first-post/, we need to create a directory named 2021 inside public, and then nested
directories named 02, 14 and first-post. Inside the final directory, we create a file named
index.html and write our rendered template to it.

Note the values we pass to render: variables for this post are contained in this and site-wide
configuration variables are contained in config. We also pass in content to allow us to access other
posts. Although we aren’t using this in the post.html template right now, it’s good to have the
option for future template updates.

Now we need to load our static files. Add this code to the bottom of the render_site function:

Create a static site generator with Python and Replit 298

1 # Static files

2 distutils.dir_util.copy_tree("static", "public")

All this code does is copy the file tree from our static directory into our public directory. This means
that our CSS file at static/css/style.css can be accessed in our HTML templates as css/style.css.
Similarly, if we create a file at static/my-picture.jpg, we can reference that in our HTML or
Markdown as my-picture.jpg and it will be found and loaded.

Now we just need to update the function invocation in our main function. Change this line:

1 render_site(config, content, templates)

To this:

1 render_site(config, content, environment, "public")

Now run the code. You should see the public directory appear in your file pane. Look inside, and
you’ll see the directories and files we just created. To see your site in action, run the following
commands in Replit’s “Shell” tab.

1 cd public

2 python -m http.server

This server will need to be restarted periodically as you work on your site.

Generic site generator

In addition to chronological blog posts, our site could do with undated pages, such as an “About”
or “Contact” page. Depending on the kind of site we want to build, we may also want photo pages,

Create a static site generator with Python and Replit 299

or pages including podcast episodes, or any number of other things. If we give this SSG to someone
else to use, they may have their own ideas as well – for example, they may want to make a site
organised as a book with numbered chapters rather than as a blog. Rather than trying to anticipate
everyone’s needs, let’s make it so we can create multiple types of content pages, and allow the user
to define those types and how they should be ordered.

This is simpler than it sounds, but will require some refactoring.

Expanding the config file

First, let’s add some content to our config.toml file to give this customization a definite shape. Add
these lines below the definition of baseURL.

config.toml

1 title = "My site"

2 baseURL = "https://YOUR-REPL-NAME-HERE.YOUR-REPLIT-USERNAME.repl.co"

3

4 types = ["post", "page"]

5

6 post.dateInURL = true

7 post.sortBy = "date"

8 post.sortReverse = true

9

10 page.dateInURL = false

11 page.sortBy = "title"

12 page.sortReverse = false

Here we’ve told our site generator we want two kinds of pages – a post type, which we will use
for blog posts, and a page type, which we will use for evergreen content such as contact details
and general site information. Below that, we’ve used TOML’s dictionary syntax to specify some
characteristics of each type.

• Posts will have a date in their URLs and will be sorted in reverse date order when listed.
• Pages will not have a date in their URLs and will be sorted alphabetically by their title.

By creating these settings, we’ll make it possible to sort a content type by any attribute in its
frontmatter.

Ingesting user-defined content

To implement this, let’s first import a new module at the top of main.py. Add the third line to your
file, below the first two.

Create a static site generator with Python and Replit 300

1 import jinja2, markdown, toml, re

2 import glob, pathlib, os, shutil, distutils.dir_util

3 import inflect

The inflectmodule allows us to turn singular words into plurals and vice versa. This will be useful
for working with the types list from our configuration file. Change the load_config function to
resemble the following.

1 def load_config(config_filename):

2

3 with open(config_filename, 'r') as config_file:

4 config = toml.loads(config_file.read())

5

6 ie = inflect.engine()

7 for content_type in config["types"]:

8 config[content_type]["plural"] = ie.plural(content_type)

9

10 return config

This code will expand the dictionaries we load from our config file with a key containing the type’s
plural. If we were to print out our config dictionary at this point, it would look like this:

1 {

2 "title": "My site"

3 "baseURL": "https://YOUR-REPL-NAME-HERE.YOUR-REPLIT-USERNAME.repl.co"

4 "types": ["post", "page"]

5 "post": {

6 "plural": "posts",

7 "dateInURL": true,

8 "sortBy": "date",

9 "sortReverse": true

10 },

11 "page": {

12 "plural": "pages",

13 "dateInURL": true,

14 "sortBy": "title",

15 "sortReverse": false

16 }

17 }

Now let’s modify load_content_items to deal with multiple, user-defined content types. First, we
need to change the function to take our config dictionary as an additional parameter. Second,
we’ll put all of our function’s current content in an inner function named load_content_type. Your
function should now look like this:

Create a static site generator with Python and Replit 301

1 def load_content_items(config, content_directory):

2

3 def load_content_type(content_type):

4 items = []

5 for fn in glob.glob(f"{content_directory}/*.md"):

6 with open(fn, 'r') as file:

7 frontmatter, content = re.split("^\+\+\+\+\+$", file.read(), 1, re.M\

8 ULTILINE)

9

10 item = toml.loads(frontmatter)

11 item['content'] = markdown.markdown(content)

12 item['slug'] = os.path.splitext(os.path.basename(file.name))[0]

13 item['url'] = f"/{item['date'].year}/{item['date'].month:0>2}/{item['dat\

14 e'].day:0>2}/{item['slug']}/"

15

16 items.append(item)

17

18 # sort in reverse chronological order

19 items.sort(key=lambda x: x["date"],reverse=True)

20

21 return items

To load from the correct directory, we will need to change this line:

1 for fn in glob.glob(f"{content_directory}/*.md"):

To this:

1 for fn in glob.glob(f"{content_directory}/{config[content_type]['plural']}/*.md"):

Here we’re using the plural of the content type we defined earlier. This will ensure that items of type
“post” can be found in “content/posts” and items of type “page” can be found in “content/pages”.

We now need to add code to respect our configuration settings. We’ll do this by changing this line:

1 item['url'] = f"/{item['date'].year}/{item['date'].month:0>2}/{item['date'].day:0>2}\

2 /{item['slug']}/"

To this:

Create a static site generator with Python and Replit 302

1 if config[content_type]["dateInURL"]:

2 item['url'] = f"/{item['date'].year}/{item['date'].month:0>2}/{item['date'].day:\

3 0>2}/{item['slug']}/"

4 else:

5 item['url'] = f"/{item['slug']}/"

Now we’ll sort according to the configuration file by changing this line:

1 # sort in reverse chronological order

2 items.sort(key=lambda x: x["date"],reverse=True)

To this:

1 # sort according to config

2 items.sort(key=lambda x: x[config[content_type]["sortBy"]],

3 reverse=config[content_type]["sortReverse"])

We can complete this load_content_items function by writing some code to iterate through our
site’s configured content types, calling load_content_type for each one. Add the following code
below the definition of load_content_type (ensure that it’s de-indented so as to be part of load_-
content_items).

1 content_types = {}

2 for content_type in config["types"]:

3 content_types[config[content_type]['plural']] = load_content_type(content_type)

4

5 return content_types

Then in the main function, change this line:

1 content = { "posts": load_content_items("content/posts") }

To this:

1 content = load_content_items(config, "content")

Rendering user-defined content

Now we need to change our output code in render_site to render each content type with its own
template. As we did with load_content_items, we’ll start by moving the post-creating for loop
into an inner function, this time named render_type. Alter your render_site function so that it
resembles the following.

Create a static site generator with Python and Replit 303

1 def render_site(config, content, environment, output_directory):

2

3 def render_type(content_type): # <-- new inner function

4 # Post pages

5 post_template = environment.get_template("post.html")

6 for item in content["posts"]:

7 path = f"public/{item['url']}"

8 pathlib.Path(path).mkdir(parents=True, exist_ok=True)

9 with open(path+"index.html", 'w') as file:

10 file.write(post_template.render(this=item, config=config))

11

12 if os.path.exists(output_directory):

13 shutil.rmtree(output_directory)

14 os.mkdir(output_directory)

15

16 for content_type in config["types"]: # <-- new for loop

17 render_type(content_type)

18

19 # !!! post for loop moved to inner function above

20

21 # Homepage

22 index_template = environment.get_template("index.html")

23 with open("public/index.html", 'w') as file:

24 file.write(index_template.render(config=config, content=content))

25

26

27 # Static files

28 distutils.dir_util.copy_tree("static", "public")

Then change this line in the render_type inner function that loads the post template:

1 post_template = environment.get_template("post.html")

Into this line that loads a template for the provided content type:

1 template = environment.get_template(f"{content_type}.html")

Alter the for loop below that line to use the content type’s plural.

1 for item in content[config[content_type]["plural"]]:

Finally, change post_template in the loop’s final line to template.

Create a static site generator with Python and Replit 304

1 file.write(template.render(this=item, config=config, content=content))

Adding a new content type

Now that we’ve done all that work to generify our code, all that’s left is to create our pages. First,
let’s create a page template at layout/page.html. Use the following code.

1 <!DOCTYPE html>

2 <html>

3 {% import "macros.html" as macros %}

4 {{ macros.head(this.title) }}

5 <body>

6 <h1>{{ this.title }}</h1>

7 {{ this.content }}

8 <p>Return to the homepage ⤾</p>

9 </body>

10 </html>

This is just our post.html template without the date.

Now create a new subdirectory in content called pages. Inside that subdirectory, create a file named
about.md and put the following content in it.

1 title = "About"

2 +++++

3

4 This website is built with Python, Jinja, TOML and Markdown.

This is sufficient to create a new page at /about/, but it won’t be linked anywhere. For that,
we’ll need to create a global navigation bar for our site. Create the following additional macro in
layout/macros.html.

1 {% macro navigation(pages) -%}

2 <nav>

3 {% for page in pages %}

4 {{ page.title }}

5 {% endfor %}

6 </nav>

7 {% endmacro -%}

Then include the macro in index.html, page.html and post.html by inserting the following code
just underneath {{ macros.head(this.title) }}.

Create a static site generator with Python and Replit 305

1 {{ macros.navigation(content.pages) }}

Finally, add the CSS below to static/css/style.css to apply light styling to the navigation bar.

1 nav ul

2 {

3 list-style-type: none;

4 text-align: right;

5 }

Run your code and preview your site with cd public && python -m http.server in the repl shell,
and you should see something like this:

*click to open gif²³⁰

Where to next?

We’ve created a flexible SSG capable of generating many different types of HTML pages, which can
be served from any web server. Apart from fleshing out the templates and adding new content types,
you might want to expand the generator’s functionality to allow things like:

• Categories or tags for content items.
• Ability to generate an RSS or Atom feed for people to subscribe to.
• A way to mark items as drafts, so they won’t be included when the site is compiled.
• Navigation features like next and previous item links.
• Useful error messages for malformed directory structures and configuration files.

²³⁰https://docs.replit.com/images/tutorials/static-site-generator/generator_functionality.gif

https://docs.replit.com/images/tutorials/static-site-generator/generator_functionality.gif
https://docs.replit.com/images/tutorials/static-site-generator/generator_functionality.gif

Create a static site generator with Python and Replit 306

Next Tutorial

In the next tutorial we take a look at how to build a personal stock market dashboard app to keep
track of your portfolio’s performance. The application will allow you to record stock purchases and
then show you the percentage gain or loss on the stock by making use of web scraping. At the end
of it, you should have a good understanding of web scraping using Requests and Beautiful Soup.

Build a Personal Stock Market
Dashboard
In this tutorial, we will be building a single-page web dashboard for tracking a real or imaginary
stock portfolio. This dashboard will:

• Allow the user to record stock purchases.
• Track the current price of all stocks held through web scraping.
• Show the user the percentage gain or loss on their holdings, for each stock and in total.

Dashboard functionality

After working through this tutorial, you’ll:

• Be able to build a single-page application with Flask and JavaScript.
• Understand web scraping with Requests and Beautiful Soup.
• Know how to manage persistent data with Replit’s database.

Build a Personal Stock Market Dashboard 308

Creating the Dashboard

We’re going to build our dashboard using Python (plus a bit of JavaScript). Sign in to Replit²³¹ or
create an account²³² if you haven’t already. Once logged in, create a new Python repl.

Creating a Python repl

Our dashboard will need to have three functions:

• Displaying the current state of the stock portfolio.
• Recording share purchases.
• Flushing the database (this will be useful for testing).

Let’s start by creating an HTML frontend with the basic data and form elements necessary to enable
this functionality. In your repl’s file pane, create a directory named templates, and in that folder,
create a file called index.html (this file structure is necessary for building Flask applications).

²³¹https://replit.com
²³²https://replit.com/signup

https://replit.com/
https://replit.com/signup
https://replit.com/
https://replit.com/signup

Build a Personal Stock Market Dashboard 309

Creating the file structure

Then enter the following HTML into the index.html file:

1 <!DOCTYPE html>

2 <html>

3 <link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/\

4 css/bootstrap.min.css" integrity="sha384-ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQ\

5 UOhcWr7x9JvoRxT2MZw1T" crossorigin="anonymous">

6 <style>

7 .positive:before { content: "+"; color: green; }

8 .positive { color: green; }

9 .negative { color: red; }

10 th, td { padding: 1em; }

11 body { margin: 2em auto; max-width: 80em; }

12 </style>

13 <body>

14 <form action="/buy" method="post">

15 <input type="text" placeholder="ticker" name="ticker"/>

16 <input type="text" placeholder="# shares" name="shares"/>

17 <input type="text" placeholder="price" name="price"/>

18 <input type="submit" value="Buy"/>

19 </form>

20

21 <table id="portfolio">

22 <tr>

Build a Personal Stock Market Dashboard 310

23 <th>Ticker</th>

24 <th>Number of shares</th>

25 <th>Total cost</th>

26 <th>Current value</th>

27 <th>Percent change</th>

28 </tr>

29 <tr>

30 <td>Loading...</td>

31 <tr>

32 </table>

33 Flush DB

34 </body>

35 </html>

In this file, we’ve imported Bootstrap CSS²³³ and applied some minimal styles of our own to make
the default content look a little better. We’ve also created a form for recording share purchases, and
a table that will display our share portfolio.

Now let’s write some Python code so we can display this page in our Flask app. Enter the following
code in main.py:

1 from flask import Flask, render_template, request, jsonify, url_for, redirect

2 import json

3

4 site = Flask(__name__)

5

6 @site.route('/')

7 def index():

8 return render_template('index.html')

9

10 site.run(host='0.0.0.0', port=8080)

Now run your repl. The resulting page should look like this:

²³³https://getbootstrap.com/

https://getbootstrap.com/
https://getbootstrap.com/

Build a Personal Stock Market Dashboard 311

Initial dashboard

The first thing we need to implement to get this page functional is the share purchase form. Let’s do
that now.

Accessing the Database and Recording Purchases

We can allow users to “buy” stock by entering the ticker symbol²³⁴, the number of shares purchased,
and the price per share. While it would also make sense to record the purchase time, we will leave
that out for the sake of simplicity (but you can add it later on your own).

We will record these purchases by adding them to the Replit database²³⁵. This is a simple key-value
store that you can think of as a big Python dictionary which retains its state between runs of a repl.
Using this database will save us from having to re-enter all of our stock information every time we
restart our dashboard.

To use the Replit Database, all we have to do is add the following import statement at the top of
main.py:

1 from replit import db

Now we can use the globally scoped variable db like a Python dictionary, keeping in mind that
whatever we store in it will persist between executions of our application. A cheat sheet for using
the database is available from your repl’s database tab on the sidebar.

²³⁴https://en.wikipedia.org/wiki/Ticker_symbol
²³⁵https://docs.replit.com/misc/database

https://en.wikipedia.org/wiki/Ticker_symbol
https://docs.replit.com/misc/database
https://en.wikipedia.org/wiki/Ticker_symbol
https://docs.replit.com/misc/database

Build a Personal Stock Market Dashboard 312

Database sidebar

Let’s give it a spin and write the function for buying shares. Add the following code just above the
line beginning with site.run:

1 @site.route('/buy', methods=['POST'])

2 def buy():

3 # Create shares key if it doesn't exist

4 if 'shares' not in db.keys():

5 db['shares'] = {}

6

7 # Extract values from form

8 ticker = request.form['ticker'][:5].upper()

9 price = float(request.form['price'])

10 shares = int(request.form['shares'])

11

12 if ticker not in db['shares']: # buying these for the first time

13 db['shares'][ticker] = { 'total_shares': shares,

14 'total_cost': shares * price }

Build a Personal Stock Market Dashboard 313

15

16 db['shares'][ticker]['purchases'] = [{ 'shares': shares,

17 'price': price }]

18 else: # buying more

19 db['shares'][ticker]['total_shares'] += shares

20 db['shares'][ticker]['total_cost'] += shares * price

21 db['shares'][ticker]['purchases'].append({ 'shares': shares,

22 'price': price})

23

24 return redirect(url_for("index"))

First, if necessary, we create an empty dictionary at the “shares” key of our db database. This code
will only need to run the first time we buy shares.

Then, we extract the ticker, price and number of shares from the form data, coercing each one into
an appropriate format. We want stock tickers to be uppercase and a maximum of five characters
long²³⁶, prices to include fractional amounts, and number of shares to be integers (though you could
change that later to support fractional shares²³⁷).

Finally, we add our share purchase to the “shares” dictionary. This dictionary is made up of ticker
symbol keys mapped to inner dictionaries, which in turn contain the following information:

• The total number of shares owned.
• The total cost of all shares purchased.
• A list of individual purchases. Each purchase is a dictionary containing the number of shares
purchased, and their unit price.

This may seem like a complicated structure, but it is necessary to allow users to buy shares in the
same company at different prices. With some data added, our dictionary could look like this:

1 {

2 "AAPL": {

3 "total_shares": 15,

4 "total_cost": 1550,

5 "purchases": [

6 {

7 "shares": 10,

8 "price": 100

9 },

10 {

11 "shares": 5,

²³⁶https://www.investopedia.com/terms/s/stocksymbol.asp
²³⁷https://www.investopedia.com/terms/f/fractionalshare.asp

https://www.investopedia.com/terms/s/stocksymbol.asp
https://www.investopedia.com/terms/s/stocksymbol.asp
https://www.investopedia.com/terms/f/fractionalshare.asp
https://www.investopedia.com/terms/s/stocksymbol.asp
https://www.investopedia.com/terms/f/fractionalshare.asp

Build a Personal Stock Market Dashboard 314

12 "price": 110

13 }

14]

15 },

16 "MSFT": {

17 "total_shares": 20,

18 "total_cost": 4000,

19 "purchases": [

20 {

21 "shares": 20,

22 "price": 200

23 }

24]

25 }

26 }

In the data above, we’ve bought 10 shares of Apple Inc (AAPL) at $100 per share, and 5 at $110
per share. We’ve also bought 20 shares of Microsoft Corporation (MSFT) at $200 per share. The
total_shares and total_cost values could be derived from the list of purchases, but we’re storing
them in the database to avoid having to recalculate them unnecessarily.

Run your code now, and add a few stocks with random values. You can use some example tickers:
AAPL, MSFT, AMZN, FB, GOOG. While our purchases won’t show up on our dashboard, you can
determine whether they’re getting added to the database by visiting the database tab on your repl’s
sidebar. If your code is correct, you should see non-zero values under the “STORAGE” heading.

At the moment, our dashboard will also allow you to add any value as a ticker symbol, even if it’s
not a real public company. And, needless to say, our dashboard also doesn’t show us the current
value of our stocks. We’ll fix those issues soon, but first we need to implement some functionality
to help us test.

Flushing the Database

A persistent database is vital for creating most useful web applications, but it can get messy in the
early stages of development when we’re adding a lot of different test data and experimenting with
different structures. That’s why it’s useful to have a quick and easy way to delete everything.

We’ve already included a link to flush the database in our index.html file, so now let’s create the
backend functionality in Flask. Add this code to main.py, below the buy function:

Build a Personal Stock Market Dashboard 315

1 @site.route('/flush')

2 def flush_db():

3 del db["shares"]

4 return redirect(url_for("index"))

Here we’re deleting the shares key from our database and then redirecting the user to the dashboard.
As shares is the only key in our database, this code will suffice for now, but if we add more keys,
we’ll have to change it accordingly.

Test this new functionality out by flushing your database before moving on to the next section,
especially if you have invalid stock tickers. You can confirm whether the flush worked by checking
the database tab of your repl’s sidebar, where the values under “STORAGE” should now be zero.
Note that deletion may take a few seconds to reflect.

Serving Our Portfolio Data

We want our dashboard to be a live display that fetches new stock prices periodically, without us
having to refresh the page. It would also be nice to unload calculations such as percentage gain or loss
to the client’s web browser, so we can reduce load on our server. To this end, we will be structuring
our portfolio viewing functionality as an API endpoint that is queried by JavaScript code, rather
than using Jinja templates to build it on the server-side.

The first thingwemust do to achieve this is to create a Flask endpoint that returns the user’s portfolio.
We’ll do this at /portfolio. Add the following code to main.py, below the buy function:

1 @site.route('/portfolio')

2 def portfolio():

3 if "shares" not in db.keys():

4 return jsonify({})

5

6 portfolio = json.loads(db.get_raw("shares"))

7

8 # Get current values

9 for ticker in portfolio.keys():

10 current_price = float(get_price(ticker))

11 current_value = current_price * portfolio[ticker]['total_shares']

12 portfolio[ticker]['current_value'] = current_value

13

14 return jsonify(**portfolio)

The purpose of this function is to serve a JSON object²³⁸ of the shares portfolio to the client. Later,
we’ll write JavaScript for our dashboard which will use this object to construct a table showing our
portfolio information.
²³⁸https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON

Build a Personal Stock Market Dashboard 316

In the above code, if no stocks have been added, we return an empty JSON object. Otherwise, we set
portfolio to a copy of the shares dictionary in our Replit database. The Python Replit library uses
custom list and dictionary types that cannot be directly serialized into JSON, so we use db.get_raw²³⁹
to convert the whole thing into a string and json.loads to convert that string into a standard Python
dictionary.

Then we need to get the current values for each of our stock holdings. To do so, we loop through
portfolio.keys(), call get_price(ticker) and multiply the return value by the total shares we’re
holding for this stock. We then add this value under the new current_value key in our stock’s
dictionary.

Finally, we convert our portfolio dictionary to JSON using Flask’s jsonify²⁴⁰ and return it.

There’s just one problem: we haven’t implemented get_price yet! Let’s do that now, before we try
to run this code.

Fetching Current Prices

We’ll fetch the current prices of our stocks by scraping²⁴¹ the Yahoo Finance²⁴² website. While the
more traditional and foolproof way of consuming structured data such as share prices is to use an
API²⁴³ that provides structured data in a computer-ready format, this is not always feasible, as the
relevant APIs may be limited or even non-existent. For these and other reasons, web scraping is a
useful skill to have.

A quick disclaimer before we jump in: Copyright law and web scraping laws are complex and
differ by country. As long as you aren’t blatantly copying their content or doing web scraping for
commercial gain, people generally don’t mind web scraping. However, there have been some legal
cases involving scraping data from LinkedIn, andmedia attention from scraping data fromOKCupid.
Web scraping can violate the law, go against a particular website’s terms of service, or breach ethical
guidelines – so take care with where you apply this skill.

Additionally, from a practical perspective, web scraping code is usually brittle and likely to break in
the event that a scraped site changes its appearance.

With those considerations in mind, let’s start scraping. We’ll use Python Requests²⁴⁴ to fetch web
pages and Beautiful Soup²⁴⁵ to parse them and extract the parts we’re interested in. Let’s import
those at the top of main.py.

²³⁹https://replit-py.readthedocs.io/en/latest/db_tutorial.html#advanced-usage
²⁴⁰https://flask.palletsprojects.com/en/2.0.x/api/#module-flask.json
²⁴¹https://en.wikipedia.org/wiki/Web_scraping
²⁴²https://finance.yahoo.com/
²⁴³https://en.wikipedia.org/wiki/API
²⁴⁴https://docs.python-requests.org/en/master/
²⁴⁵https://www.crummy.com/software/BeautifulSoup/

https://replit-py.readthedocs.io/en/latest/db_tutorial.html#advanced-usage
https://flask.palletsprojects.com/en/2.0.x/api/#module-flask.json
https://en.wikipedia.org/wiki/Web_scraping
https://finance.yahoo.com/
https://en.wikipedia.org/wiki/API
https://docs.python-requests.org/en/master/
https://www.crummy.com/software/BeautifulSoup/
https://replit-py.readthedocs.io/en/latest/db_tutorial.html#advanced-usage
https://flask.palletsprojects.com/en/2.0.x/api/#module-flask.json
https://en.wikipedia.org/wiki/Web_scraping
https://finance.yahoo.com/
https://en.wikipedia.org/wiki/API
https://docs.python-requests.org/en/master/
https://www.crummy.com/software/BeautifulSoup/

Build a Personal Stock Market Dashboard 317

1 from bs4 import BeautifulSoup

2 import requests

Now we can create our get_price function. Enter the following code near the top of main.py, just
below site = Flask(__name__):

1 def get_price(ticker):

2 page = requests.get("https://finance.yahoo.com/quote/" + ticker)

3 soup = BeautifulSoup(page.text, "html5lib")

4

5 price = soup.find('span', {'class':'Trsdu(0.3s) Fw(b) Fz(36px) Mb(-4px) D(ib)'})\

6 .text

7

8 # remove thousands separator

9 price = price.replace(",", "")

10

11 return price

The first line fetches the page on Yahoo Finance that shows information about our stock share price.
For example, the link below will show share price information for Apple Inc:

https://finance.yahoo.com/quote/AAPL²⁴⁶

We then load the page into a Beautiful Soup object, parsing it as HTML5 content. Finally, we need to
find the price. If you visit the above page in your browser, right-click on the price near the top of the
page and select “Inspect”. You’ll notice that it’s inside a span element with a class value containing
Trsdu(0.3s) Fw(b) Fz(36px) Mb(-4px) D(ib). If the market is open, and the price is changing,
additional classes may be added and removed as you watch, but the previously mentioned value
should still be sufficient.

We use Beautiful Soup’s find²⁴⁷ method to locate this span. The text attribute of the object returned
is the price we want. Before returning it, we remove any comma thousands separators to avoid float
conversion errors later on.

Although we’ve implemented this functionality for the sake of portfolio viewing, we can also use
it to improve our share buying process. We’ll make a few additional quality-of-life changes at the
same time. Find your buy function code and modify it to look like this:

²⁴⁶https://finance.yahoo.com/quote/AAPL
²⁴⁷https://www.crummy.com/software/BeautifulSoup/bs3/documentation.html#find(name,%20attrs,%20recursive,%20text,%20**kwargs)

https://finance.yahoo.com/quote/AAPL
https://www.crummy.com/software/BeautifulSoup/bs3/documentation.html#find(name,%20attrs,%20recursive,%20text,%20**kwargs)
https://finance.yahoo.com/quote/AAPL
https://www.crummy.com/software/BeautifulSoup/bs3/documentation.html#find(name,%20attrs,%20recursive,%20text,%20**kwargs)

Build a Personal Stock Market Dashboard 318

1 @site.route('/buy', methods=['POST'])

2 def buy():

3 # Create shares key if it doesn't exist

4 if 'shares' not in db.keys():

5 db['shares'] = {}

6

7 ticker = request.form['ticker']

8

9 # remove starting $

10 if ticker[0] == '$':

11 ticker = ticker[1:]

12

13 # uppercase and maximum five characters

14 ticker = ticker.upper()[:5]

15

16 current_price = get_price(ticker)

17 if not get_price(ticker): # reject invalid tickers

18 return f"Ticker $'{ticker}' not found"

19

20 if not request.form['price']: # use current price if price not specified

21 price = float(current_price)

22 else:

23 price = float(request.form['price'])

24

25 if not request.form['shares']: # buy one if number not specified

26 shares = 1

27 else:

28 shares = int(request.form['shares'])

29

30 if ticker not in db['shares']: # buying these for the first time

31 db['shares'][ticker] = { 'total_shares': shares,

32 'total_cost': shares * price }

33

34 db['shares'][ticker]['purchases'] = [{ 'shares': shares,

35 'price': price }]

36 else: # buying more

37 db['shares'][ticker]['total_shares'] += shares

38 db['shares'][ticker]['total_cost'] += shares * price

39 db['shares'][ticker]['purchases'].append({ 'shares': shares,

40 'price': price})

41

42 return redirect(url_for("index"))

Build a Personal Stock Market Dashboard 319

The first change we’ve made to this function is to strip leading $s on ticker symbols, in case users
include those. Then, by calling get_price in this function, we can both prevent users from adding
invalid stock tickers and allow users to record purchases at the current price by leaving the price
field blank. Additionally, we’ll assume users want to buy just one share if they leave the number of
shares field blank.

We can now test out our code. Run your repl, add some stocks, and then, in a separate tab, navigate
to this URL (replacing the two ALL-CAPS values first):

1 https://YOUR-REPL-NAME.YOUR-USERNAME.repl.co/portfolio

You should now see a JSON object similar to the database structure detailed above, with the current
value of each stock holding as an additional field. In the next section, we’ll display this data on our
dashboard.

Showing Our Portfolio

We will need to write some JavaScript to fetch our portfolio information, assemble it into a table,
and calculate the percentage changes for each stock as well as our portfolio’s total cost, current value
and percentage change.

Add the following code just above the closing </body> tag in templates/index.html:

1 <script>

2 function getPortfolio() {

3 fetch("/portfolio")

4 .then(response => response.json())

5 .then(data => {

6 console.log(data);

7 });

8

9 }

10

11 getPortfolio();

12 </script>

This code uses the Fetch API²⁴⁸ to query our /portfolio endpoint and returns a Promise²⁴⁹, which
we feed into two then²⁵⁰ methods. The first one extracts the JSON data from the response, and
the second one logs the data to JavaScript console. This is a common pattern in JavaScript, which
provides a lot of asynchronous²⁵¹ functionality.

²⁴⁸https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
²⁴⁹https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
²⁵⁰https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then
²⁵¹https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Concepts

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Concepts
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Concepts

Build a Personal Stock Market Dashboard 320

Run your repl and open its web page in a new tab.

Opn in new tab

Then open your browser’s devtools with F12, and you should see your portfolio JSON object in the
console. If you don’t, give it a few seconds.

In browser console

Now let’s add the rest of our JavaScript code. Delete console.log(data); and add the following
code in its place:

1 var table = document.getElementById("portfolio");

2 var tableHTML = `<tr>

3 <th>Ticker</th>

4 <th>Number of shares</th>

5 <th>Total cost</th>

6 <th>Current value</th>

7 <th>Percent change</th>

8 </tr>`;

9

10 var portfolioCost = 0;

Build a Personal Stock Market Dashboard 321

11 var portfolioCurrent = 0;

12

13 for (var ticker in data) {

14 var totalShares = data[ticker]['total_shares'];

15 var totalCost = data[ticker]['total_cost'];

16 var currentValue = data[ticker]['current_value'];

17 var percentChange = percentChangeCalc(totalCost, currentValue);

18

19 row = "<tr>";

20 row += "<td>$" + ticker + "</td>";

21 row += "<td>" + totalShares + "</td>";

22 row += "<td>$" + totalCost.toFixed(2) + "</td>";

23 row += "<td>$" + currentValue.toFixed(2) + "</td>";

24 row += percentChangeRow(percentChange);

25 row += "</tr>";

26 tableHTML += row;

27

28 portfolioCost += totalCost;

29 portfolioCurrent += currentValue;

30 }

31

32 portfolioPercentChange = percentChangeCalc(portfolioCost, portfolioCurrent);

33

34 tableHTML += "<tr>";

35 tableHTML += "<th>Total</th>";

36 tableHTML += "<th> </th>";

37 tableHTML += "<th>$" + portfolioCost.toFixed(2) + "</th>";

38 tableHTML += "<th>$" + portfolioCurrent.toFixed(2) + "</th>";

39 tableHTML += percentChangeRow(portfolioPercentChange);

40 tableHTML += "</tr>"

41

42 table.innerHTML = tableHTML;

This code constructs an HTML table²⁵² containing the values queried from our portfolio endpoint,
as well as the extra calculated values we mentioned above. We use the toFixed²⁵³ method to cap the
number of decimal places for financial values to two.

We also use a couple of helper functions for calculating and displaying percentage changes. Add the
code for these above the getPortfolio function declaration:

²⁵²https://developer.mozilla.org/en-US/docs/Web/HTML/Element/table
²⁵³https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/toFixed

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/table
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/toFixed
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/table
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/toFixed

Build a Personal Stock Market Dashboard 322

1 function percentChangeCalc(x, y) {

2 return (x != 0 ? (y - x) * 100 / x : 0);

3 }

4

5 function percentChangeRow(percentChange) {

6 if (percentChange > 0) {

7 return "<td class='positive'>" + percentChange.toFixed(2) + "%</td>";

8 }

9 else if (percentChange < 0) {

10 return "<td class='negative'>" + percentChange.toFixed(2) + "%</td>";

11 }

12 else {

13 return "<td>" + percentChange.toFixed(2) + "%</td>";

14 }

15 }

The percentChangeCalc function calculates the percentage difference between two numbers, avoid-
ing division by zero. The percentChangeRow function allows us to style gains and losses differently
by adding classes that we’ve already declared in the page’s CSS.

Finally, we need to add some code to periodically refetch our portfolio, so that we can see the newest
price data. We’ll use JavaScript’s setInterval²⁵⁴ function for this. Add the following code just above
the closing </script> tag.

1 // refresh portfolio every 60 seconds

2 setInterval(function() {

3 getPortfolio()

4 }, 60000)

Run your repl, add some stocks if you haven’t, and you should see something like this:

²⁵⁴https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Timeouts_and_intervals#setinterval

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Timeouts_and_intervals#setinterval
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Timeouts_and_intervals#setinterval

Build a Personal Stock Market Dashboard 323

Dashboard with portfolio

From this point on, we highly recommend viewing your application in a new browser tab rather
than Replit’s in-page browser, to get the full-page dashboard experience.

Caching

Our dashboard is feature-complete, but a bit slow. As we’re rendering it with client-side JavaScript
that has to execute in the user’s browser, we won’t be able to make it load instantly with the rest of
the page, but we can do some server-side caching to speed it up a little and reduce the load on our
repl.

Currently, whenever we send a request to the /portfolio endpoint, we execute get_price on each
of our stocks and rescrape Yahoo Finance to find their prices. Under normal conditions, stock prices
are unlikely to change significantly moment-to-moment, and our dashboard is not a high-frequency
trading²⁵⁵ platform, so we should write some logic to store the current share price and only renew
it if it’s more than 60 seconds old. Let’s do this now.

As we’re going to be modifying the database structure in this section, it’s a good idea to flush your
repl’s database before going any further, so as to avoid errors.

First, we’ll import the time module, near the top of main.py.

1 import time

²⁵⁵https://www.investopedia.com/ask/answers/09/high-frequency-trading.asp

https://www.investopedia.com/ask/answers/09/high-frequency-trading.asp
https://www.investopedia.com/ask/answers/09/high-frequency-trading.asp
https://www.investopedia.com/ask/answers/09/high-frequency-trading.asp

Build a Personal Stock Market Dashboard 324

This allows us to use time.time(), which returns the current Unix Epoch²⁵⁶, a useful value for
counting elapsed time in seconds. Add the following code to the buy function, just above the return
statement:

1 db['shares'][ticker]['current_price'] = current_price

2 db['shares'][ticker]['last_updated'] = time.time()

This code will add the current share price for each ticker and when it was last updated to our
database.

Now we need to modify the get_price function to resemble the code below:

1 def get_price(ticker):

2

3 # use cache if price is not stale

4 if ticker in db["shares"].keys() and time.time() < db["shares"][ticker]["last_up\

5 dated"]+60:

6 return db["shares"][ticker]["current_price"]

7

8 page = requests.get("https://finance.yahoo.com/quote/" + ticker)

9 soup = BeautifulSoup(page.text, "html5lib")

10

11 price = soup.find('span', {'class':'Trsdu(0.3s) Fw(b) Fz(36px) Mb(-4px) D(ib)'})\

12 .text

13

14 # remove thousands separator

15 price = price.replace(",", "")

16

17 # update price in db

18 if ticker in db["shares"].keys():

19 db["shares"][ticker]["current_price"] = price

20 db["shares"][ticker]["last_updated"] = time.time()

21

22 return price

The if statement at the top will cause the function to return the current price recorded in our database
if it has been fetched recently, and the two new lines near the bottom of the function will ensure
that when a new price is fetched, it gets recorded in the database, along with an updated timestamp.

You can play around with different caching time periods in this function and different refresh
intervals in the JavaScript code to find the right tradeoff between accurate prices and fast load
times.
²⁵⁶https://www.epochconverter.com/

https://www.epochconverter.com/
https://www.epochconverter.com/

Build a Personal Stock Market Dashboard 325

Where Next?

Our stock dashboard is functional, and even useful to an extent, but there’s still a lot more we could
do with it. The following features would be good additions:

• Support for fractional shares.
• The ability to record the sale of shares.
• Timestamps for purchase (and sale) records.
• Support for cryptocurrencies, perhaps using data from CoinMarketCap²⁵⁷.
• The ability to create multiple portfolios or user accounts.
• Graphs.

Next Tutorial

Up next, we’re going to learn how to build a tic-tac-toe game using Kaboom.js for the interface and
WebSocket to allow the players to play over the internet. The tutorial will leave you with a good
understanding of gaming development principles and valuable knowledge on how to use sockets to
communicate between clients in real time.
²⁵⁷https://coinmarketcap.com/

https://coinmarketcap.com/
https://coinmarketcap.com/

Building tic-tac-toe with WebSocket
and Kaboom.js
Tic-tac-toe, or noughts and crosses, or Xs and Os, is a simple classic game for 2 players. It’s usually
played with paper and pen, but it also makes a good first game to write for networked multiplayer.

In this tutorial, we’ll create a 2-player online tic-tac-toe game using a Node.js²⁵⁸ server. Socket.IO²⁵⁹
will enable realtime gameplay across the internet. We’ll use Kaboom.js to create the game interface.

Game play

click to open gif ²⁶⁰

How do multiplayer games work?

Multiplayer games have an architecture that typically looks something like this:

²⁵⁸https://nodejs.org/en/
²⁵⁹https://socket.io
²⁶⁰https://docs.replit.com/images/tutorials/27-tictactoe-kaboom/gameplay.gif

https://nodejs.org/en/
https://socket.io/
https://docs.replit.com/images/tutorials/27-tictactoe-kaboom/gameplay.gif
https://nodejs.org/en/
https://socket.io/
https://docs.replit.com/images/tutorials/27-tictactoe-kaboom/gameplay.gif

Building tic-tac-toe with WebSocket and Kaboom.js 327

Game server architecture

Players (clients) connect to a game server over the internet. The game runs on the game server,
where all the game rules, scores and other data are processed. The players’ computers render the
graphics for the game, and send player commands (from the keyboard, mouse, gamepad, or other
input device) back to the game server. The game server checks if these commands are valid, and
then updates the game state. The game state is a representation of all the variables, players, data
and information about the game. This game state is then transmitted back to all the players and the
graphics are updated.

A lot of communication needs to happen between a player’s computer and the game server in online
multiplayer games. This generally requires a 2-way, or bidirectional, link so that the game server
can send data and notify players of updates to the game state. This link should ideally be quick too,
so a more permanent connection is better.

With the HTTP²⁶¹ protocol that websites usually use, a browser opens a connection to a server, then

²⁶¹https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Building tic-tac-toe with WebSocket and Kaboom.js 328

makes a request to the server, and the server sends back data, and closes the connection. There is no
way for the server to initiate sending data to the browser. HTTP is also heavy on overhead, since it
opens and closes a connection each time data is requested and sent.

WebSocket²⁶² is an advanced internet protocol that allows us to create a 2-way, persistent connection
between a browser and a server. We’ll use the Socket.IO²⁶³ package to help us manage WebSocket
connections in this project.

Creating a new project

For this project, we’ll need to create 2 repls - 1 using Node.js for the game server, and 1 using Kaboom
for the players. Head over to Replit²⁶⁴ and create a two new repls:

• To create the server project, choose “Node.js” as your project type. Give this repl a name, like
“tic-tac-toe-server”.

Server repl

• To create the player project, choose “Kaboom” as your project type. Give this repl a name, like
“tic-tac-toe”.

²⁶²https://en.wikipedia.org/wiki/WebSocket
²⁶³https://socket.io
²⁶⁴https://replit.com

https://en.wikipedia.org/wiki/WebSocket
https://socket.io/
https://replit.com/
https://en.wikipedia.org/wiki/WebSocket
https://socket.io/
https://replit.com/

Building tic-tac-toe with WebSocket and Kaboom.js 329

New Player repl

We’ll code in the server repl to start, and then switch between repls as we build the game.

Setting up Socket.IO on the server

Add the following code to the file called index.hs in the server project to import Socket.IO:

1 const http = require('http');

2 const sockets = require('socket.io')

3

4 const server = http.createServer();

5 const io = sockets(server, {

6 cors: {

7 origin: "https://tic-tac-toe.<YOUR-USER-NAME>.repl.co",

8 methods: ["GET", "POST"]

9 }

10 });

11

12 server.listen(3000, function() {

13 console.log('listening on 3000');

14 });

In the first 2 lines, we import the built-in node http²⁶⁵ package and the socket.io²⁶⁶ package. The

²⁶⁵https://nodejs.org/api/http.html
²⁶⁶https://socket.io

https://nodejs.org/api/http.html
https://socket.io/
https://nodejs.org/api/http.html
https://socket.io/

Building tic-tac-toe with WebSocket and Kaboom.js 330

http package enables us to run a simple HTTP server. The socket.io package extends that server
to add WebSocket²⁶⁷ functionality.

To create the HTTP server, we use the http.createServer(); method. Then we set up Socket.IO
by creating a new io object. We pass in the HTTP server object along with some configuration for
CORS²⁶⁸. CORS stands for “Cross Origin Resource Sharing”, and it’s a system that tells the server
which other sites are allowed to connect to it and access it. We set origin to allow our player repl
to connect. Replace the origin value with the URL of the player project repl you set up earlier.

In the last 2 lines, we start the server up by calling its listen method, along with a port to listen
on. We use 3000, as this is a standard for Node.js. If it starts successfully, we write a message to the
console to let us know.

We’ll add the rest of the server code above the server.listen line, as we only want to start the
server up after all the other code is ready.

Tracking the game state

Now that we have a server, lets think a bit about how we will represent, or model, the game. Our
tic-tac-toe game will have a few different properties to track:

• The status of the game: What is currently happening? Are we waiting for players to join, are
the players playing, or is the game over?

• The current positions on the tic-tac-toe board. Is there a player in a grid block, or is it empty?
• All the players. What are their names, and which symbol are they using, X or O?
• The current player. Whose turn is it to go?
• If the game ends in a win, who won it?

For the status of the game, we’ll add an enumeration²⁶⁹ of the possible states we can expect. This
makes it easier to track and use them as we go through the different phases of the game.

1 const Statuses = {

2 WAITING: 'waiting',

3 PLAYING: 'playing',

4 DRAW: 'draw',

5 WIN: 'win'

6 }

• WAITING: We are waiting for all the players to join the game.
• PLAYING: The players can make moves on the board.

²⁶⁷https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
²⁶⁸https://developer.mozilla.org/en-US/docs/Glossary/CORS
²⁶⁹https://masteringjs.io/tutorials/fundamentals/enum

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Glossary/CORS
https://masteringjs.io/tutorials/fundamentals/enum
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Glossary/CORS
https://masteringjs.io/tutorials/fundamentals/enum

Building tic-tac-toe with WebSocket and Kaboom.js 331

• DRAW: The game has ended in a draw.
• WIN: A player has won the game.

Now let’s add a game state object to track everything:

1 let gameState = {

2 board: new Array(9).fill(null),

3 currentPlayer: null,

4 players : [],

5 result : {

6 status : Statuses.WAITING

7 }

8 }

First, we have a representation of the tic-tac-toe board as an array with 9 elements. This is how the
array elements are mapped to the board:

Building tic-tac-toe with WebSocket and Kaboom.js 332

Tic Tac Toe board mapped to array indices

Each number in the blocks represents the index at which the board position is represented in the
array. Initially, we fill all the elements of the array with null to indicate that the block is open. When
players make a move to occupy an open space, we’ll add a reference to the player instead. That way
we can keep track of which blocks are empty, and which are occupied by which player.

Next, we have currentPlayer, which we will alternately set to each player when it’s their turn to
move.

Then there is an array called players, which will hold references to both of the players in the game.
This will allow us to show the names of the players on screen, as well as generally keep track of the

Building tic-tac-toe with WebSocket and Kaboom.js 333

players.

The result field is updated after every move. This field will contain the status of the game (as we
defined above). As it’s represented as an object, it will also be able to hold extra fields. We’ll use that
functionality to add a reference to the winner of the game, if the game ends in a win.

Accepting connections

When a player connects via WebSocket, Sockets.IO will fire a connection²⁷⁰ event. We can listen for
this event and handle tracking the connection, as well as creating listeners for other custom events.
There are a few custom events²⁷¹ we can define here, that our players will emit:

• addPlayer: We’ll use this event for a player to request joining the game.
• action: This is used when a player wants to make a move.
• rematch: Used when a game is over, but the players want to play again.

We can also listen for the built-in disconnect²⁷² event, which will alert us if a player leaves the game
(for example, by closing the browser window or if their internet connection is lost).

Let’s add the code that will hook up our listeners to the events:

1 io.on('connection', function (connection) {

2 connection.on('addPlayer', addPlayer(connection.id));

3 connection.on('action', action(connection.id));

4 connection.on('rematch', rematch(connection.id));

5 connection.on('disconnect', disconnect(connection.id));

6 });

Next we’ll implement each of these listener functions, starting with addPlayer.

SideNote:Normally in examples for custom listeners, you’ll see the handler code added immediately
with an anonymous function, like this:

²⁷⁰https://socket.io/docs/v4/server-instance/#connection
²⁷¹https://socket.io/docs/v4/emitting-events/
²⁷²https://socket.io/docs/v4/server-socket-instance/#disconnect

https://socket.io/docs/v4/server-instance/#connection
https://socket.io/docs/v4/emitting-events/
https://socket.io/docs/v4/server-socket-instance/#disconnect
https://socket.io/docs/v4/server-instance/#connection
https://socket.io/docs/v4/emitting-events/
https://socket.io/docs/v4/server-socket-instance/#disconnect

Building tic-tac-toe with WebSocket and Kaboom.js 334

1 io.on('connection', function (connection) {

2 connection.on('addPlayer', (data)=> {

3 // some code here

4 });

5

6 connection.on('action', (data)=> {

7 // some code here

8 });

9

10 // etc ...

11 });

This is convenient, especially when there are a couple of handlers, each with only a small amount of
code. It’s also handy because in each of the handler functions, you still have access to the connection
object, which is not passed on each event. However, it can get a little messy and unwieldy if there
are many event handlers, with more complex logic in each.

We’re doing it differently so that we can separate the handlers into functions elsewhere in the code
base. We do have one problem to solve though: if they are separate functions, how will they access
the connection parameter in such a way that we can tell which player sent the command? With the
concept of closures²⁷³, which are well-supported in Javascript, we can make functions that return
another function. In this way, we can pass in the connection.id parameter to the first wrapping
function, and it can return another function that takes the data arguments from the Socket.IO
event caller. Because the second function is within the closure of the first, it will have access to
the connection.id parameter. The pattern looks like this:

1 io.on('connection', function (connection) {

2 connection.on('addPlayer', addPlayer(connection.id));

3 connection.on('action', action(connection.id)) ;

4 // etc ...

5 });

6

7

8 function addPlayer(socketId){

9 return (data)=>{

10 // code here

11 }

12 }

13

14 function action(socketId){

15 return (data)=>{

16 // code here

²⁷³https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures

Building tic-tac-toe with WebSocket and Kaboom.js 335

17 }

18 }

Handling new players

Add the following function to handle adding players:

1 function addPlayer(socketId){

2 return (data)=>{

3 const numberOfPlayers = gameState.players.length;

4 if (numberOfPlayers >= 2){

5 return;

6 }

7

8 let nextSymbol = 'X';

9 if (numberOfPlayers === 1){

10 if (gameState.players[0].symbol === 'X'){

11 nextSymbol = 'O';

12 }

13 }

14

15 const newPlayer = {

16 playerName: data.playerName,

17 id: socketId,

18 symbol: nextSymbol

19 };

20

21 gameState.players.push(newPlayer);

22 if (gameState.players.length === 2){

23 gameState.result.status = Statuses.PLAYING;

24 gameState.currentPlayer = newPlayer;

25 }

26 io.emit('gameState', gameState);

27

28 }

29 }

This function does quite a bit. Let’s go through the main features.

• First it checks to see how many players are already in the game. If there are already 2 players,
it returns early without changing anything. If this check passes, it goes on to add a new player.
Note that even when there is no space in the game for a new player, we don’t disconnect the
player - they still get updates and can watch the match.

Building tic-tac-toe with WebSocket and Kaboom.js 336

• Next, the function figures out which symbol, X or O, the new player should be. It will assign
X to the first player. If there is already a player, and the existing player’s symbol is X, then
it will assign O to the new player. Note that there is a possible case where there is only one
player, and their symbol is O. This would occur if there are 2 players, and the player with the
X symbol disconnects from the game, leaving only the player with the O symbol. This is why
we always check what symbol the existing player in the game has.

• Then the function constructs a new player object with some identifying information, including
the name that the player sends through, the socketId they connected on, and their symbol.
When a new player requests to join, we expect them to send an object with a field playerName

to tell us their handle.
• Now we add the new player to the player array in our gameState object, so that they are part
of the game.

• We go on to check if we have 2 players, and start playing if we do. We begin by updating the
status of the game to PLAYING, and set the currentPlayer, i.e. the player who is first to go, as
the latest player to have joined.

• Finally, we use the Socket.IO emit²⁷⁴ function to send the updated gameState to all connections.
This will allow them to update the players’ displays.

Handling player actions

The next handler takes care of the moves players make. We expect that the incoming data from the
player will have a property called gridIndex to indicate which block on the board the player wants
to mark. This should be a number that maps to the numbers for each block in the board, as in the
picture earlier on.

1 function action(socketId){

2 return (data)=> {

3 if (gameState.result.status === Statuses.PLAYING && gameState.currentPlayer.id =\

4 == socketId){

5 const player = gameState.players.find(p => p.id === socketId);

6 if (gameState.board[data.gridIndex] == null){

7 gameState.board[data.gridIndex] = player;

8 gameState.currentPlayer = gameState.players.find(p => p !== player);

9 checkForEndOfGame();

10 }

11 }

12 io.emit('gameState', gameState);

13 }

14 }

In this function, we check a couple of things first:

²⁷⁴https://socket.io/docs/v4/emitting-events/

https://socket.io/docs/v4/emitting-events/
https://socket.io/docs/v4/emitting-events/

Building tic-tac-toe with WebSocket and Kaboom.js 337

• The game status must be PLAYING - players can’t make moves if the game is in any other state.
• The player attempting to make the move must be the currentPlayer, i.e. the player whose turn
it is to go.

If these conditions are met, we find the player in the gameState.players array using the built-in
find²⁷⁵ method on arrays, by looking for the player by their socketId.

Now we can check if the board position (gridIndex) requested by the player is available. We check
that the value for that position in the gameState.board array is null, and if it is, we assign the player
to it.

The player has made a successful move, so we give the other player a turn. We switch the
gameState.currentPlayer to the other player by using the array find²⁷⁶ method again, to get the
player who does not match the current player.

We also need to check if the move the player made changed the status of the game. Did that move
make them win the game, or is it a draw, or is the game still in play? We call out to a function
checkForEndOfGame to check for this. We’ll implement this function a little later, after we’re done
with all the handlers.

Finally, we send out the latest gameState to all the players (and spectators) to update the game UI.

Handling a rematch request

Let’s make it possible for a player to challenge their opponent to a rematch when the game has
ended:

1 function rematch(socketId){

2 return (data) => {

3 if (gameState.players.findIndex(p=> p.id === socketId) < 0) return; // Don't let\

4 spectators rematch

5 if (gameState.result.status === Statuses.WIN || gameState.result.status === Stat\

6 uses.DRAW){

7 resetGame();

8 io.emit('gameState', gameState);

9 }

10 }

11 }

This function first checks if the connection sending the rematch request is actually one of the players,
and not just a spectator. If we can’t find a match for a player, we return immediately, making no
changes.

²⁷⁵https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/find
²⁷⁶https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/find

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/find
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/find
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/find
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/find

Building tic-tac-toe with WebSocket and Kaboom.js 338

Then we check if the game is in one of the final states, either WIN or DRAW. If it is, we call out to a
function resetGame to set up the game again. Finally, we send out the latest gameState to all the
players.

Let’s implement the resetGame function:

1 function resetGame(){

2 gameState.board = new Array(9).fill(null);

3

4 if (gameState.players.length === 2){

5 gameState.result.status = Statuses.PLAYING;

6 const randPlayer = Math.floor(Math.random() * gameState.players.length);

7 gameState.currentPlayer = gameState.players[randPlayer];

8 } else {

9 gameState.result.status = Statuses.WAITING;

10 gameState.currentPlayer = null;

11 }

12 }

Let’s take a look at what we’re doing here:

• First, our function creates a new array for the gameState board. This effectively clears the
board, setting all the positions back to null, or empty.

• Then it checks that there are still 2 players connected. If there are, it sets the game status back
to PLAYING and chooses at random which player’s turn it is to go. We choose the first player
randomly so that there isn’t one player getting an advantage by going first every time.

If there is only one player remaining, we set the game status to WAITING instead, and listen for any
new players who want to join. We also set the currentPlayer to null, as we will choose which player
should go once the new player has joined.

Handling disconnects

The last handler we need to implement is if a connection to a player is lost. This could be because
the player has exited the game (by closing the browser tab), or has other internet issues.

Building tic-tac-toe with WebSocket and Kaboom.js 339

1 function disconnect(socketId){

2 return (reason) => {

3 gameState.players = gameState.players.filter(p => p.id != socketId);

4 if (gameState.players !== 2){

5 resetGame();

6 io.emit('gameState', gameState);

7 }

8 }

9 }

This function uses the built-in array filter²⁷⁷ function to remove the player that disconnected from
the server. Since it’s possible that the disconnect event isn’t from a player but from a spectator, we
check the number of players left after filtering the disconnecting socket from the player list. If there
aren’t 2 players remaining after filtering, we reset the game and send out the updated game state.

Checking for the end of the game

Now we can get back to implementing the checkForEndOfGame() function we referenced in the
action handler.

We’re only interested in detecting 2 cases: A win or a draw.

There are just 8 patterns that determine if a player has won at tic-tac-toe. Let’s map them to our
board with its indexed blocks:

All possible win lines

We can encode each of these winning patterns into an array of 3 numbers each. Then we can add
each of those patterns to a larger array, like this:

²⁷⁷https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter

Building tic-tac-toe with WebSocket and Kaboom.js 340

1 const winPatterns = [

2 [0, 1, 2],

3 [3, 4, 5],

4 [6, 7, 8],

5 [0, 3, 6],

6 [1, 4, 7],

7 [2, 5, 8],

8 [0, 4, 8],

9 [2, 4, 6]

10]

Now that we have each winning pattern in an array, we can loop through each of them to see if
there is a player that has positions that match any of the patterns.

Since the players are also in an array in gameState.players, we can loop through that array, and
check each player against the winning pattern array. If a player matches any of these patterns, we
can change the game status to WIN and set that player as the winner in the results.

Here is the code to do that:

1 function checkForEndOfGame(){

2

3 // Check for a win

4 gameState.players.forEach(player => {

5 winPatterns.forEach(seq => {

6 if (gameState.board[seq[0]] == player

7 && gameState.board[seq[1]] == player

8 && gameState.board[seq[2]] == player){

9 gameState.result.status = Statuses.WIN;

10 gameState.result.winner = player;

11 }

12 });

13 });

14

15 // Check for a draw

16 if (gameState.result.status != Statuses.WIN){

17 const emptyBlock = gameState.board.indexOf(null);

18 if (emptyBlock == -1){

19 gameState.result.status = Statuses.DRAW;

20 }

21 }

22 }

We also check for a draw in this function. A draw is defined as when all the blocks are occupied (no
moremoves can bemade), but no player hasmatched one of the win patterns. To check if there are no

Building tic-tac-toe with WebSocket and Kaboom.js 341

more empty blocks, we use the array method indexOf²⁷⁸ to find any null values in gameState.board

array. Remember that nullmeans an empty block here. The indexOfmethod will return -1 if it can’t
find any null values. In that case, we set the game status to DRAW, ending the game.

Now we have all the functionality we need on the server, let’s move on to building the Kaboom
website the players will use to play the game.

Setting up Kaboom with Socket.IO

The first thing we need to do is create an opening scene in Kaboom that will prompt for the player’s
name, and setup Socket.IO so we can connect to the server. Head over to the Kaboom repl we created
earlier, and add a new scene called startGame:

add new scene

click to open gif ²⁷⁹

Now we can add a reference to Socket.IO. Normally, in a plain HTML project, we could add a
<script>²⁸⁰ tag and reference the Socket.IO client script²⁸¹, hosted automatically on our game server.
However, in the Kaboom project type on Replit, we don’t have direct access to change the underlying
HTML files. Therefore, we need to add the script programmatically. We can do it by accessing the
document²⁸² object available in every browser, and insert a new element with our script.

²⁷⁸https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/indexOf
²⁷⁹https://docs.replit.com/images/tutorials/27-tictactoe-kaboom/startGameScene.gif
²⁸⁰https://www.w3schools.com/tags/tag_script.asp
²⁸¹https://socket.io/docs/v4/client-installation/#Installation
²⁸²https://developer.mozilla.org/en-US/docs/Web/API/Document

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/indexOf
https://docs.replit.com/images/tutorials/27-tictactoe-kaboom/startGameScene.gif
https://www.w3schools.com/tags/tag_script.asp
https://socket.io/docs/v4/client-installation/#Installation
https://developer.mozilla.org/en-US/docs/Web/API/Document
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/indexOf
https://docs.replit.com/images/tutorials/27-tictactoe-kaboom/startGameScene.gif
https://www.w3schools.com/tags/tag_script.asp
https://socket.io/docs/v4/client-installation/#Installation
https://developer.mozilla.org/en-US/docs/Web/API/Document

Building tic-tac-toe with WebSocket and Kaboom.js 342

1 let script = document.createElement("script");

2 script.src = 'https://tic-tac-toe-server.<YOUR_USER_NAME>.repl.co' + '/socket.io/soc\

3 ket.io.js'

4 document.head.appendChild(script);

Replace the <YOUR_USER_NAME> part of the URL with your Replit username. This code inserts the new
<script> tag into the <head>²⁸³ section of the underlying HTML page that Kaboom runs in.

Let’s move on to the code to prompt the player to enter their name.

1 const SCREEN_WIDTH = 1000;

2 const SCREEN_HEIGHT = 600;

3

4 add([

5 text("What's your name? ",20),

6 pos(SCREEN_WIDTH / 2, SCREEN_HEIGHT / 3),

7 origin("center")

8]);

9

10 const nameField = add([

11 text("",20),

12 pos(SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2),

13 origin("center")

14]);

15

16 charInput((ch) => {

17 nameField.text += ch;

18 });

19

20 keyRelease("enter", ()=>{

21 go("main", {playerName: nameField.text});

22 })

To keep the calculations for the UI layout simpler, we’ll use a fixed size for the screen. That’s where
the 2 constants for the screen width and height come in.

We use the Kaboom add²⁸⁴ function to display the prompt “What’s your name?” on the screen, using
the text²⁸⁵ component. We choose a position halfway across the screen, SCREEN_WIDTH / 2, and
about a third of the way down the screen, SCREEN_HEIGHT / 3. We add the origin²⁸⁶ component, set
to center, to indicate that the positions we set must be in the center of the text field.

²⁸³https://www.w3schools.com/tags/tag_head.asp
²⁸⁴https://kaboomjs.com/#add
²⁸⁵https://kaboomjs.com/#text
²⁸⁶https://kaboomjs.com/#origin

https://www.w3schools.com/tags/tag_head.asp
https://kaboomjs.com/#add
https://kaboomjs.com/#text
https://kaboomjs.com/#origin
https://www.w3schools.com/tags/tag_head.asp
https://kaboomjs.com/#add
https://kaboomjs.com/#text
https://kaboomjs.com/#origin

Building tic-tac-toe with WebSocket and Kaboom.js 343

Then we add another object with an empty "" text component. This will display the characters the
player types in. We position it exactly halfway down and across the screen. We also hold a reference
to the object in the constant nameField.

To get the user’s keyboard input, we use the Kaboom function charInput²⁸⁷. This function calls an
event handler each time a key on the keyboard is pressed. We take that character and append it to
the text in the nameField object. Now, when a player presses a key to enter their name, it will show
up on the screen.

Finally, we use the Kaboom function keyRelease²⁸⁸ to listen for when the player pushes the enter
key. We’ll take that as meaning they have finished entering their name and want to start the game.
In the handler, we use the Kaboom go²⁸⁹ function to redirect to the main scene of the game.

Setting Kaboom parameters

We’ve created a new starting scene, and we have a fixed size for the game window. Now we need
to update the Kaboom settings so that the game play environment reflects those choices.

Click the dropdown next to the Kaboom menu. Set the “Start Scene” to “StartGame”. Uncheck “Full
Screen”, and set the Width to 1000 and Height to 600. Set the scale to “1”. Then choose dark blue or
black as the “Clear Color”.

Kaboom setup

click to open gif ²⁹⁰
²⁸⁷https://kaboomjs.com/#charInput
²⁸⁸https://kaboomjs.com/#keyRelease
²⁸⁹https://kaboomjs.com/#go
²⁹⁰https://docs.replit.com/images/tutorials/27-tictactoe-kaboom/kaboomSettings.gif

https://kaboomjs.com/#charInput
https://kaboomjs.com/#keyRelease
https://kaboomjs.com/#go
https://docs.replit.com/images/tutorials/27-tictactoe-kaboom/kaboomSettings.gif
https://kaboomjs.com/#charInput
https://kaboomjs.com/#keyRelease
https://kaboomjs.com/#go
https://docs.replit.com/images/tutorials/27-tictactoe-kaboom/kaboomSettings.gif

Building tic-tac-toe with WebSocket and Kaboom.js 344

Adding the game board

Now we can add the UI elements for the game itself. Open the “main” scene in your Kaboom repl,
and add the following code to draw the tic-tac-toe board:

1 // Board

2 add([

3 rect(1,400),

4 pos(233,100),

5]);

6

7 add([

8 rect(1,400),

9 pos(366,100),

10]);

11

12 add([

13 rect(400,1),

14 pos(100, 233),

15]);

16

17 add([

18 rect(400,1),

19 pos(100, 366),

20]);

This adds 4 rectangles with a width of 1 pixel and length of 400 pixels to the screen - each rectangle
is more like a line. This is how we draw the lines that create the classic tic-tac-toe board shape. The
first 2 rectangles are the vertical lines, and the second 2 are the horizontal lines. We place the board
closer to the left side of the screen, instead of the center, to save space for game information to be
displayed on the right hand side of the screen.

If you run the game, and enter your name, you should see the board layout like this:

Building tic-tac-toe with WebSocket and Kaboom.js 345

board layout

Now we need to add a way to draw the X and O symbols in each block. To do this, we’ll add objects
with text components in each block of the board. First, we’ll make an array containing the location
and size of each block:

1 const boardSquares = [

2 {index: 0, x: 100, y: 100, width:133, height: 133 },

3 {index: 1, x: 233, y: 100, width:133, height: 133 },

4 {index: 2, x: 366, y: 100, width:133, height: 133 },

5 {index: 3, x: 100, y: 233, width:133, height: 133 },

6 {index: 4, x: 233, y: 233, width:133, height: 133 },

7 {index: 5, x: 366, y: 233, width:133, height: 133 },

8 {index: 6, x: 100, y: 366, width:133, height: 133 },

9 {index: 7, x: 233, y: 366, width:133, height: 133 },

10 {index: 8, x: 366, y: 366, width:133, height: 133 }

11];

We can run through this array and create a text object that we can write to when we want to update
the symbols on the board. Let’s create a function to do that.

Building tic-tac-toe with WebSocket and Kaboom.js 346

1 function createTextBoxesForGrid(){

2 boardSquares.forEach((square)=>{

3 let x = square.x + square.width*0.5;

4 let y = square.y + square.height*0.5;

5 square.textBox = add([

6 text('', 40),

7 pos(x, y),

8 origin('center')

9]);

10 })

11 }

12

13 createTextBoxesForGrid();

This function uses the array forEach²⁹¹ method to loop through each “square” definition in the
boardSquares array. We then find the center x and y of the square, and add²⁹² a new text object to
the screen, and also add it to the square definition on the field textBox so we can access it later to
update it. We use the origin component to ensure the text is centered in the square.

Finally, we call the function to create the text boxes.

Adding player names and game status

Now let’s add some areas for the player’s names and for the current status of the game (whose turn
it is to play, if someone has won, or if it’s a draw).

1 // Players and game status elements

2 const playerOneLabel = add([

3 text('', 16),

4 pos(600, 100),

5]);

6

7 const playerTwoLabel = add([

8 text('', 16),

9 pos(600, 150),

10]);

11

12 const statusLabel = add([

13 text('', 16),

14 pos(600, 200),

²⁹¹https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
²⁹²https://kaboomjs.com/#add

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://kaboomjs.com/#add
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://kaboomjs.com/#add

Building tic-tac-toe with WebSocket and Kaboom.js 347

15 color(0,1,0)

16]);

Here we add 3 objects with text²⁹³ components. The first 2 are placeholders for the player names
and symbols. The third one is for the game status. They are positioned to the right of the screen,
and contain empty text to start. We’ll change the contents as we receive new game states from the
server. The last object has a color component to set the color of the text to green. This is to make
the status message stand out from the rest of the text.

Connecting to the server

To connect to the game server, we need to initialize the Socket.IO library we dynamically added
earlier. We need to provide the URL to the server repl, so copy that from the output window:

Copying server url

Now add this code along with the server URL:

1 var socket = io('https://tic-tac-toe-server.<YOUR_USER_NAME>.repl.co');

2

3 socket.on('connect', function(){

4 socket.emit("addPlayer", {

5 playerName: args.playerName

6 });

7 });

In the first line, we initialize the Socket.IO client library²⁹⁴ to connect to the server. Then we add
a listener to the connect²⁹⁵ event. This lets us know when we have established a connection to the
server.

If we have a connection, we then emit²⁹⁶ an event to the server, with our custom event type
addPlayer. We also add in the player name, which we passed to this scene from the startGame

²⁹³https://kaboomjs.com/#text
²⁹⁴https://socket.io/docs/v4/client-initialization/
²⁹⁵https://socket.io/docs/v4/client-socket-instance/#Socket-connected
²⁹⁶https://socket.io/docs/v4/emitting-events/

https://kaboomjs.com/#text
https://socket.io/docs/v4/client-initialization/
https://socket.io/docs/v4/client-socket-instance/#Socket-connected
https://socket.io/docs/v4/emitting-events/
https://kaboomjs.com/#text
https://socket.io/docs/v4/client-initialization/
https://socket.io/docs/v4/client-socket-instance/#Socket-connected
https://socket.io/docs/v4/emitting-events/

Building tic-tac-toe with WebSocket and Kaboom.js 348

scene. Any arguments passed between scenes are accessible through the args parameter within the
scene. Emitting the addPlayer event to the server will cause the addPlayer event handler to fire on
the server side, adding the player to the game, and emitting back the game state.

Handling updated game state

Remember that our server emits a gameState event whenever something changes in the game. We’ll
listen for that event, and update all the UI elements in an event handler.

First, we need to add the definitions of each status as we have done on the server side, so that we
can easily reference them in the code:

1 const Statuses = {

2 WAITING: 'waiting',

3 PLAYING: 'playing',

4 DRAW: 'draw',

5 WIN: 'win'

6 }

Now we can add a listener and event handler:

1 socket.on('gameState', function(state){

2 for (let index = 0; index < state.board.length; index++) {

3 const player = state.board[index];

4 if (player != null){

5 boardSquares[index].textBox.text = player.symbol;

6 } else

7 {

8 boardSquares[index].textBox.text = '';

9 }

10 }

11

12 statusLabel.text = '';

13 switch (state.result.status) {

14 case Statuses.WAITING:

15 statusLabel.text = 'Waiting for players....';

16 break;

17 case Statuses.PLAYING:

18 statusLabel.text = state.currentPlayer.playerName + ' to play';

19 break;

20 case Statuses.DRAW:

21 statusLabel.text = 'Draw!';

Building tic-tac-toe with WebSocket and Kaboom.js 349

22 break;

23 case Statuses.WIN:

24 statusLabel.text = state.result.winner.playerName + ' Wins! \nPress R for rema\

25 tch';

26 break;

27 default:

28 break;

29 }

30

31 playerOneLabel.text = '';

32 playerTwoLabel.text = '';

33 if (state.players.length > 0){

34 playerOneLabel.text = state.players[0].symbol + ': ' + state.players[0].playerNa\

35 me;

36 }

37

38 if (state.players.length > 1){

39 playerTwoLabel.text = state.players[1].symbol + ': ' + state.players[1].playerNa\

40 me;

41 }

42

43 });

This function looks quite long, but it’s mainly just updating the text boxes we added.

First, we loop through the board positions array that is passed from the server on the state payload,
to check each block for a player positioned on it. If there is a player on a block, we write that player’s
symbol to the corresponding text box, found in the boardSquares array we created above. If there
is no player in the block, i.e it’s a null value, we write an empty string to the text block.

Then we update the statusLabel to show what is currently happening in the game. We use a
switch²⁹⁷ statement to create logic for each of the possibilities. We write a different message to
the statusLabel text box depending on the status, drawing from data in the gameState object.

Next we update the player name text boxes. First we reset them, in case one of the players has
dropped out. Then we update the text boxes with the players’ symbols and names. Note that we first
check if there are the corresponding players in the array.

Now that we’re done with updating from the game state, let’s try running the game again. Open the
game window in a new tab so that requests to the repl server don’t get blocked by the browser due
to the CORS header ‘Access-Control-Allow-Origin’ not matching in the embedded window. Make
sure the server is also running, and enter your name. You should see something like this:

²⁹⁷https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/switch

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/switch
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/switch

Building tic-tac-toe with WebSocket and Kaboom.js 350

Open in new tab

Waiting for another player

You can connect to your game in another browser tab, and enter another name. Then you should see
both names come up, and the status message change to allow a player to make a move. Of course,
we haven’t yet implemented the code to enable making a move from the UI, so let’s do that now.

Handling player moves

We want a player to be able to click on a block to place their move. Kaboom has a function
mouseRelease²⁹⁸ that we can use to handle mouse click events. All we need then is the position
the mouse cursor is at, and we can map that to one of the board positions using our boardSquares
array to do the lookup. We’ll use the Kaboom function mousePos²⁹⁹ to get the coordinates of the
mouse:

²⁹⁸https://kaboomjs.com/#mouseRelease
²⁹⁹https://kaboomjs.com/#mousePos

https://kaboomjs.com/#mouseRelease
https://kaboomjs.com/#mousePos
https://kaboomjs.com/#mouseRelease
https://kaboomjs.com/#mousePos

Building tic-tac-toe with WebSocket and Kaboom.js 351

1 mouseRelease(() => {

2 const mpos = mousePos();

3 // find the square we clicked on

4 for (let index = 0; index < boardSquares.length; index++) {

5 const square = boardSquares[index];

6 if (mpos.x > square.x

7 && mpos.x < square.x + square.width

8 && mpos.y > square.y

9 && mpos.y < square.y + square.height){

10 socket.emit("action", {

11 gridIndex: square.index

12 });

13 break;

14 }

15 }

16 });

If we find a ‘hit’ on one of the board squares, we emit our action event. We pass the index of the
square that was clicked on as the payload data. The server listens for this event, and runs the logic
we added for the action event on the server side. If the action changes the game state, the server
will send back the new game state, and the UI elements update.

The only other input we need to implement is to check if the player wants a rematch. To do that,
we’ll assign the r key as the rematch command. We can use the Kaboom function charInput³⁰⁰ to
listen for key press events. We’ll check if the key is r, or R, then emit the rematch event. We don’t
have any data to pass with that, so we’ll just pass null.

1 charInput((ch) => {

2 if (ch === 'r' || ch === 'R'){

3 socket.emit("rematch", null)

4 }

5 });

Now you can run the game (and the server), and open the game in another tab, and you should be
able to play tic-tac-toe against yourself! Send a link to the game to a friend, and see if they can join
and play against you.

³⁰⁰https://kaboomjs.com/#charInput

https://kaboomjs.com/#charInput
https://kaboomjs.com/#charInput

Building tic-tac-toe with WebSocket and Kaboom.js 352

playing tic tac toe

Next Steps

Now that you know the basics of creating a multiplayer online game, try your hand at making some
different games, like checkers or chess or go.

Happy coding!

Next Tutorial

In the next tutorial, we take a look at how to build a team technical challenge website with
replit.web. When complete, the site will serve as a leaderboard that can be used to track competition
progress for hackathons and other similar challenges. The resulting application can also be further
customized to give it a personal look or additional functionality.

Build a team technical challenge
website with replit.web

Code competitions and hackathons are a fun way to expand your programming skills, get exposed
to new ideas, and work together to solve difficult problems. The time-limited, competitive nature of
these competitions provides an additional challenge.

In this tutorial, we’ll use the replit.web framework to build a leaderboard website for an online
technical challenge in the vein of Advent of Code³⁰¹ or Hackasat³⁰². We’ll focus on the generic aspects
of the site, such as teams, challenges and scores, so once we’re done, you can use the site for your
own competition.

Challenge site functionality

click to open gif ³⁰³

By the end of this tutorial, you’ll be able to:

³⁰¹https://adventofcode.com/
³⁰²https://www.hackasat.com/
³⁰³https://docs.replit.com/images/tutorials/28-technical-challenge-site/site-functionality.gif

https://adventofcode.com/
https://www.hackasat.com/
https://docs.replit.com/images/tutorials/28-technical-challenge-site/site-functionality.gif
https://adventofcode.com/
https://www.hackasat.com/
https://docs.replit.com/images/tutorials/28-technical-challenge-site/site-functionality.gif

Build a team technical challenge website with replit.web 354

• Use Replit’s Flask-based web framework to rapidly develop authenticated web applications
with persistent storage.

• Use WTForms to create sophisticated web forms.
• Use custom function decorators to handle multiple user roles.

Getting started

To get started, sign into Replit³⁰⁴ or create an account³⁰⁵ if you haven’t already. Once logged in, create
a Python repl.

Creating a new repl

Our competition website will have the following functionality:

• Users can sign in with their Replit accounts and either create a team or join an existing team.
To join an existing team, a team password will be required.

• Once they’re in a team, users will be able to view challenges and submit challenge solutions. To
keep things simple, we will validate challenge solutions by requiring users to submit a unique
code per challenge.

• A designated group of admin users will have the ability to add and remove challenges, start
and end the competition, and clear the database for a new competition.

Let’s start off our competition application with the following module imports in main.py:

³⁰⁴https://replit.com
³⁰⁵https://replit.com/signup

https://replit.com/
https://replit.com/signup
https://replit.com/
https://replit.com/signup

Build a team technical challenge website with replit.web 355

1 from flask import Flask, render_template, flash, redirect, url_for, request

2 from replit import db, web

Here we’re importing a number of Flask features we’ll need. We could just use import flask to
import everything, but we’ll be using most of these functions often enough that having to prepend
themwith flask.would quickly become tiresome.We’re also importing Replit’s db and webmodules,
which will give us data persistence and user authentication.

Now let’s create our app and initialize its database. Add the following code just below the import
statements in main.py:

1 app = Flask(__name__)

2

3 # Secret key

4 app.config['SECRET_KEY'] = "YOUR-SECRET-KEY-HERE"

5

6 # Database setup

7 db_init()

8 users = web.UserStore()

9

10 ADMINS = ["YOUR-REPLIT-USERNAME-HERE"]

Here we initialize our application, our general and user databases, and our list of admins. Make
sure to replace the string in ADMINS with your Replit username before proceeding. Also replace the
secret key with a long, random string. You can generate one in your repl’s Python console with the
following two lines of code:

1 import random, string

2 ''.join(random.SystemRandom().choice(string.ascii_uppercase + string.digits) for _ i\

3 n range(20))

Generating a random string

Build a team technical challenge website with replit.web 356

You’ll notice that db_init() is undefined. As this is going to be a fairly large codebase, we’re going
to put it in a separate file. Create the file db_init.py in your repl’s files tab:

Database init file

Add the following code to this file:

1 from replit import db

2

3 def db_init():

4 if "teams" not in db.keys():

5 db["teams"] = {}

6

7 if "challenges" not in db.keys():

8 db["challenges"] = {}

9

10 if "competition_started" not in db.keys():

11 db["competition_started"] = False

Replit’s Database³⁰⁶ can be thought of and used as one big Python dictionary that we can access
with db³⁰⁷. Any values we store in db will persist between repl restarts.

To import this file in main.py, we can use an import statement in much the same way as we would
for a module. Add this line in main.py, below your other imports:

1 from db_init import db_init

We’ve also defined a secondary database users in main.py. While db only contains what we put

³⁰⁶https://docs.replit.com/hosting/database-faq
³⁰⁷https://replit-py.readthedocs.io/en/latest/api.html#module-replit.database

https://docs.replit.com/hosting/database-faq
https://replit-py.readthedocs.io/en/latest/api.html#module-replit.database
https://docs.replit.com/hosting/database-faq
https://replit-py.readthedocs.io/en/latest/api.html#module-replit.database

Build a team technical challenge website with replit.web 357

into it, users is a UserStore³⁰⁸ that will automatically have the names of users who sign into our
application added as keys, so we can easily store and retrieve information about them.

Now let’s create some test content and run our app. Add the following code, and then run your repl.

1 # Routes

2 @app.route("/")

3 @web.authenticated

4 def index():

5 return f"Hello {web.auth.name}"

6

7 web.run(app)

Because we’ve added the @web.authenticated function decorator³⁰⁹ to our index page, it will only
be available to logged in users. You should see this now, as your app will show a login button. Click
on that button, and authorize your application to use Replit authentication in the window that pops
up.

Login Button

Having done that, you should now see the greeting we implemented above. If you send your repl to
a friend, they will also be able to log in, and see their own Replit username on the greeting message.

Creating user roles

Function decorators like @web.authenticated, which prevent a function from executing unless
certain conditions are met, are very useful for web applications like this one, in which we want to
restrict certain pages based on who’s attempting to view them. @web.authenticated restricts users
based on authentication – who a user is. We can now create our own decorators to restrict users
based on authorization – what a user is allowed to do.

For this site, we’re concerned about three things:

³⁰⁸https://replit-py.readthedocs.io/en/latest/api.html
³⁰⁹https://realpython.com/primer-on-python-decorators/

https://replit-py.readthedocs.io/en/latest/api.html
https://realpython.com/primer-on-python-decorators/
https://replit-py.readthedocs.io/en/latest/api.html
https://realpython.com/primer-on-python-decorators/

Build a team technical challenge website with replit.web 358

• Is the user in a team? Users who aren’t need to be able to create or join a team, and users who
are need to be able to submit challenge solutions.

• Is the user an admin? Users who are need to be able to create challenges, and perform
other administrative tasks. For the sake of fairness, they should not be allowed to join teams
themselves.

• Is the competition running? If not, we don’t want non-admin users to be able to view challenge
pages or attempt to submit solutions.

First, we’ll create two helper functions to answer these questions. Add the following code to main.py,
just below your ADMINS list:

1 # Helper functions

2 def is_admin(username):

3 return username in ADMINS

4

5 def in_team(username):

6 if "team" in users[username].keys():

7 return users[username]["team"]

The is_admin() function will return True if the provided user is an admin, or False otherwise. The
function in_team() will return the name of the team the user is in, or None if they aren’t in a team.

Now we can create our authorization function decorators. Add the following import function to the
top of main.py:

1 from functools import wraps

Then add this code below our helper functions:

1 # Authorization decorators

2 def admin_only(f):

3 @wraps(f)

4 def decorated_function(*args, **kwargs):

5

6 if not is_admin(web.auth.name):

7 flash("Permission denied.", "warning")

8 return redirect(url_for("index"))

9

10 return f(*args, **kwargs)

11

12 return decorated_function

Build a team technical challenge website with replit.web 359

This code may look a bit strange if you haven’t written your own decorators before. Here’s how it
works: admin_only is the name of our decorator. You can think of decorators as functions which take
other functions as arguments. (The code coming up is example code for the purpose of illustration,
and not part of our program.) Therefore, if we write the following:

1 @admin_only

2 def admin_function():

3 return f"Hello admin"

4

5 admin_function()

it will be roughly equivalent to:

1 def admin_function():

2 return f"Hello admin"

3

4 admin_only(admin_function)

So whenever admin_function gets called, the code we’ve defined in decorated_function will
execute before anything we define in admin_function. This means we don’t have to include an if

not is_admin check in every piece of admin functionality. As per the code, if a non-admin attempts
to access restricted functionality, our app will flash³¹⁰ a warning message and redirect them to the
home page.

We also need to define a decorator for the opposite case, where we need to ensure that the current
user is not an admin. Add the following code just below the # Authorization decorators code you
added above:

1 def not_admin_only(f):

2 @wraps(f)

3 def decorated_function(*args, **kwargs):

4

5 if is_admin(web.auth.name):

6 flash("Admins can't do that.", "warning")

7 return redirect(url_for("index"))

8

9 return f(*args, **kwargs)

10

11 return decorated_function

We will do much the same thing for team_only and not_team_only:

³¹⁰https://flask.palletsprojects.com/en/2.0.x/patterns/flashing/

https://flask.palletsprojects.com/en/2.0.x/patterns/flashing/
https://flask.palletsprojects.com/en/2.0.x/patterns/flashing/

Build a team technical challenge website with replit.web 360

1 def team_only(f):

2 @wraps(f)

3 def decorated_function(*args, **kwargs):

4

5 if not in_team(web.auth.name):

6 flash("Join a team first!", "warning")

7 return redirect(url_for("index"))

8

9 return f(*args, **kwargs)

10

11 return decorated_function

12

13 def not_team_only(f):

14 @wraps(f)

15 def decorated_function(*args, **kwargs):

16

17 if in_team(web.auth.name):

18 flash("You've already joined a team!", "warning")

19 return redirect(url_for("index"))

20

21 return f(*args, **kwargs)

22

23 return decorated_function

Finally, we need to add a decorator to check whether our competition is running. This is mainly for
challenge description pages, so we’ll add an exception for non-admin users:

1 def competition_running(f):

2 @wraps(f)

3 def decorated_function(*args, **kwargs):

4

5 if not (is_admin(web.auth.name) or db["competition_started"]):

6 flash("The competition has not started yet.")

7 return redirect(url_for("index"))

8

9 return f(*args, **kwargs)

10

11 return decorated_function

Now that we’ve added our authorization controls, it’s time to give them something to authorize. In
the next sections, we’ll define all of our app’s functionality and build its front-end.

Build a team technical challenge website with replit.web 361

Building forms

The bulk of interactivity in our application will be enabled through forms. Users will be able to
create and join teams, as well as submit challenge solutions. When we work with web forms, there’s
a lot to consider, including:

• Which users should be able to submit which forms (authorization)?
• What validation do we want on different fields? For example, length requirements, or ensuring
a given value is an integer rather than a string.

• How do we give feedback on data that doesn’t pass our validations?
• Security concerns around user input, such as SQL injection³¹¹, cross-site scripting³¹² and cross-
site request forgery³¹³. While the first one won’t be relevant to our app, the second two are.

We could build all of this ourselves using Flask’s request.form as a basis, but fortunately someone
else has already done the hard work and built the WTForms³¹⁴ library, as well as Flask WTF³¹⁵,
which integrates WTForms with Flask. We’ll be using both of these to construct our application’s
various forms.

To keep our codebase navigable, we’ll put all our form code in a separate file, like we did with our
database initialization code. Create forms.py in your repl’s files tab now:

Building forms

We’ll start this file off with some imports:

³¹¹https://owasp.org/www-community/attacks/SQL_Injection
³¹²https://owasp.org/www-community/attacks/xss/
³¹³https://owasp.org/www-community/attacks/csrf
³¹⁴https://wtforms.readthedocs.io/en/2.3.x/
³¹⁵https://flask-wtf.readthedocs.io/en/0.15.x/

https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-community/attacks/csrf
https://wtforms.readthedocs.io/en/2.3.x/
https://flask-wtf.readthedocs.io/en/0.15.x/
https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/csrf
https://wtforms.readthedocs.io/en/2.3.x/
https://flask-wtf.readthedocs.io/en/0.15.x/

Build a team technical challenge website with replit.web 362

1 from replit import db

2 from flask_wtf import FlaskForm

3 from wtforms import StringField, TextAreaField, SubmitField, PasswordField, SelectFi\

4 eld, IntegerField, ValidationError

5 from wtforms.validators import InputRequired, NumberRange, Length

Here we import our Replit database, which we’ll need for uniqueness validations, as well as
everything we’ll be using from WTForms and Flask WTF.

Before we get started with our forms, it’s worth thinking about how we’re going to lay out the data
structures they’ll be used to create and modify. In db_init.py, we’ve defined two dictionaries –
“challenges” and “teams”. Each of these will contain a dictionary for each challenge or team, keyed
by an ID. Our data structure will look something like this:

1 {

2 "challenges": {

3 "ID": {

4 "name": "NAME",

5 "description": "DESCRIPTION",

6 "points": 10,

7 "code": "CHALLENGE SOLUTION CODE"

8 }

9 },

10 "teams": {

11 "ID": {

12 "name": "NAME",

13 "team_leader": "LEADER NAME",

14 "team_members": ["LEADER NAME", "ADDITIONAL MEMBER"],

15 "score": 0,

16 "password": "TEAM PASSWORD",

17 "challenges_solved": ["CHALLENGE ID", "ANOTHER CHALLENGE ID"]

18 }

19 }

20 }

The ID value for both our challenges and teams will be the challenge or team name, all-lowercase,
with spaces replaced by hyphens, so we can use it in our app’s URLs. Let’s create a function that
turns names into IDs, in forms.py, just below our imports:

1 def name_to_id(name):

2 return name.lower().replace(" ", "-")

Now we can start creating our forms. With Flask WTF, we model each form as a class inheriting
from FlaskForm. These classes take in the value of Flask’s request.form and apply validations to the
fields therein. We’ll create our TeamCreateField first, with the following code:

Build a team technical challenge website with replit.web 363

1 class TeamCreateForm(FlaskForm):

2 name = StringField(

3 "Team name",

4 validators=[

5 InputRequired(),

6 Length(3)

7]

8)

9

10 password = PasswordField(

11 "Team password",

12 validators=[

13 InputRequired(),

14 Length(8)

15]

16)

17

18 submit = SubmitField("Create team")

19

20 def validate_name(form, field):

21 if name_to_id(field.data) in db["teams"].keys():

22 raise ValidationError("Team name already taken.")

When users create teams, they’ll specify a team name and team password. In our WTForms field
specifications above, we’ve defined minimum lengths for both of these fields, ensured that the team
password is entered in a password field, and written a custom validator to reject new teams with IDs
that match existing teams. Because we’re validating on ID rather than name, users won’t be able to
create teams with the same name but different capitalization (e.g. “Codeslingers” and “codeslingers”).

Every field in all of our forms includes the InputRequired validator, which will ensure that users do
not submit blank values. This validator can be left out for optional fields.

Our ChallengeCreateForm is similar to TeamCreateForm, and can be added below it:

1 class ChallengeCreateForm(FlaskForm):

2 name = StringField(

3 "Challenge name",

4 validators=[

5 InputRequired(),

6 Length(3)

7]

8)

9

10 description = TextAreaField(

Build a team technical challenge website with replit.web 364

11 "Challenge description",

12 validators=[InputRequired()]

13)

14

15 points = IntegerField(

16 "Challenge points",

17 validators=[

18 InputRequired(),

19 NumberRange(1)

20]

21)

22

23 code = StringField("Challenge code",

24 validators=[

25 InputRequired(),

26 Length(8)

27]

28)

29

30 submit = SubmitField("Create challenge")

31

32 def validate_name(form, field):

33 if name_to_id(field.data) in db["challenges"].keys():

34 raise ValidationError("Challenge name already used.")

Here we’ve used the TextAreaField to give a bit more space for our users to write challenge
descriptions, and IntegerField to specify the number of points a challenge is worth. We’re also
requiring that challenges be worth at least 1 point, using the NumberRange validator.

Next up is our TeamJoinForm:

1 class TeamJoinForm(FlaskForm):

2 name = SelectField(

3 "Team to join",

4 choices= [

5 (team_id, team["name"]) for team_id, team in db["teams"].items()

6],

7 validators=[InputRequired()]

8)

9

10 password = PasswordField(

11 "Team password",

12 validators=[InputRequired()]

Build a team technical challenge website with replit.web 365

13)

14

15 submit = SubmitField("Join team")

In this form, we’re creating a drop-down box with the names of existing teams. The list comprehen-
sion in choices constructs a tuple for each team, consisting of the team’s ID and name. This way,
we can use the ID to identify teams on the backend while displaying the name to the user.

Our last form is ChallengeSolveForm, which users will use to submit challenge solutions. Add it to
the bottom of forms.py:

1 class ChallengeSolveForm(FlaskForm):

2 code = StringField("Challenge code",

3 validators=[

4 InputRequired(),

5]

6)

7

8 submit = SubmitField("Submit solution code")

As we’ll be including this form on the individual challenge pages, we don’t need to ask the user to
specify which challenge they’re solving.

Finally, we’ll need to import our forms and helper function into main.py so we can use them in the
rest of our app. Add the following line to the import statements in main.py:

1 from forms import TeamCreateForm, TeamJoinForm, ChallengeCreateForm, ChallengeSolveF\

2 orm, name_to_id

Now that we have our form logic, we need to integrate them into both the front-end and back-end
of the application. We’ll deal with the back-end first.

Building back-end functionality

Back-end functionality is the heart of our application. Below, we’ll define our application’s routes
and build the logic for creating and joining teams, as well as creating and solving challenges.

Team functionality

Let’s start with teams. We’ll define the following routes and functions in main.py, below our index()
function:

Build a team technical challenge website with replit.web 366

1 # Teams

2 @app.route("/team-create", methods=["GET", "POST"])

3 @web.authenticated

4 @not_admin_only

5 @not_team_only

6 def team_create():

7 pass

8

9 @app.route("/team-join", methods=['GET', 'POST'])

10 @web.authenticated

11 @not_admin_only

12 @not_team_only

13 def team_join():

14 pass

15

16 @app.route("/team/<team_id>")

17 def team(team_id):

18 pass

The /team-create and /team-join routes will use their respective forms. Users already in teams
and admins will not be permitted to create or join teams. The /team/<team_id> page will be an
informational page, showing the team’s name, score, and which challenges they’ve solved. We’re
using part of the URL as a parameter here, so, for example, /team/codeslingers will take us to the
team page for that team. We won’t require authentication for this page.

Because we’ll be dealing with passwords, we’re going to store them as one-way encrypted hashes³¹⁶.
This will prevent anyone with access to our repl’s database from easily seeing all team passwords.
We’ll use Flask’s Bcrypt extension for this, which you can install by searching for “flask-bcrypt” in
the Packages tab on the Replit IDE sidebar.

³¹⁶https://en.wikipedia.org/wiki/Hash_function

https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Hash_function

Build a team technical challenge website with replit.web 367

Flask bcrypt package

click to open gif ³¹⁷

While Replit usually automatically installs packages based on our import statements, this one must
bemanually installed, as its package name is slightly different on Pypi and on disk. Once it’s installed,
we import it with the following additional line at the top of main.py:

1 from flask_bcrypt import Bcrypt

Then we initialize a Bcrypt object for our app by adding the following line just below app = Flask(_-

_name__):

1 bcrypt = Bcrypt(app)

Now let’s add some code to our team_create function:

³¹⁷https://docs.replit.com/images/tutorials/28-technical-challenge-site/bcrypt-package.gif

https://docs.replit.com/images/tutorials/28-technical-challenge-site/bcrypt-package.gif
https://docs.replit.com/images/tutorials/28-technical-challenge-site/bcrypt-package.gif

Build a team technical challenge website with replit.web 368

1 @app.route("/team-create", methods=["GET", "POST"])

2 @web.authenticated

3 @not_admin_only

4 @not_team_only

5 def team_create():

6

7 form = TeamCreateForm(request.form)

8

9 if request.method == "POST" and form.validate():

10 team_name = form.name.data

11 team_id = name_to_id(team_name)

12

13 hashed_password = bcrypt.generate_password_hash(form.password.data).decode("\

14 utf-8")

15 team_leader = web.auth.name

16

17 # Construct team dictionary

18 db["teams"][team_id] = {

19 "name": team_name,

20 "password": hashed_password,

21 "leader": team_leader,

22 "members": [team_leader],

23 "score": 0,

24 "challenges_solved": []

25 }

26

27 # Set user team

28 users.current["team"] = team_id

29

30 flash("Team created!")

31 return redirect(url_for('team', team_id=team_id))

32

33 return render_template("team-create.html",

34 form = form,

35 **context())

First, we create an instance of TeamCreateForm using the values in request.form. We then check
whether the current request is an HTTP POST, and we call validate() on the form. Behind the
scenes, this method will run all of our field validators, and return error messages to the user for
fields that fail validation. It will only return True once all fields validate.

Once we know we’ve got valid form input, we can save its data to our database. We construct our
team’s ID using the helper function from forms.py, hash our team password, and then define our
team’s dictionary.

Build a team technical challenge website with replit.web 369

After that, we set the current user’s team in our user database and redirect the user to their new
team’s page. We use users.current as an alias for users[web.auth.name].

At the bottom of the function, we render our team-create page and tell it which form to use. This
will happen regardless of whether the initiating request was a GET or a POST. We’ll create the template
and define the context function when we build the front-end.

Now we can add the code for joining a team, in the team_join function:

1 @app.route("/team-join", methods=['GET', 'POST'])

2 @web.authenticated

3 @not_admin_only

4 @not_team_only

5 def team_join():

6

7 form = TeamJoinForm(request.form)

8

9 if request.method == "POST" and form.validate():

10 team_id = form.name.data

11 team_name = db["teams"][team_id]["name"]

12

13 if bcrypt.check_password_hash(

14 db["teams"][team_id]["password"],

15 form.password.data

16):

17 db["teams"][team_id]["members"].append(web.auth.name)

18 users.current["team"] = team_id

19

20 flash(f"You joined {team_name}!")

21 return redirect(url_for('team', team_id=team_id))

22 else:

23 flash(f"Wrong password for {team_name}!")

24 return redirect(url_for("index"))

25

26 return render_template("team-join.html",

27 form = form,

28 **context())

If our form validates, we check the provided team password, and if it’s correct, we add the current
user to the team and send them to the team page. If it’s incorrect, we redirect them to the home
page.

Finally, we can define our /team/<team_id> route, by adding this code to the team() function:

Build a team technical challenge website with replit.web 370

1 @app.route("/team/<team_id>")

2 def team(team_id):

3 return render_template("team.html",

4 team_id = team_id,

5 **context())

Admin functionality

We’re going to let admin users add challenges to the front-end so that we can keep our code generic
and re-use it for multiple competitions, if we wish. We’ll add the other admin functionality we need
at the same time.

We’ll start with the challenge creation route. Add this code below your team routes:

1 # Admin functions

2 @app.route("/admin/challenge-create", methods=["GET", "POST"])

3 @web.authenticated

4 @admin_only

5 def admin_challenge_create():

6

7 form = ChallengeCreateForm(request.form)

8

9 if request.method == "POST" and form.validate():

10 challenge_name = form.name.data

11 challenge_id = name_to_id(challenge_name)

12 hashed_code = bcrypt.generate_password_hash(form.code.data).decode("utf-8")

13

14 # Construct challenge dictionary

15 db["challenges"][challenge_id] = {

16 "name": challenge_name,

17 "description": form.description.data,

18 "points": int(form.points.data),

19 "code": hashed_code

20 }

21

22 flash("Challenge created!")

23 return redirect(url_for('challenge', challenge_id=challenge_id))

24

25 return render_template("admin/challenge-create.html",

26 form = form,

27 **context())

This code is almost identical to our team creation functionality. While hashing challenge codes may

Build a team technical challenge website with replit.web 371

not be strictly necessary, it will prevent any users with access to our repl from cheating by viewing
the database.

Challenge removal is a bit simpler:

1 @app.route("/admin/challenge-remove/<challenge_id>")

2 @web.authenticated

3 @admin_only

4 def admin_remove_challenge(challenge_id):

5

6 # Remove challenge from team solutions

7 for _, team in db["teams"].items():

8 if challenge_id in team["challenges_solved"]:

9 team["challenges_solved"].remove(challenge_id)

10 team["score"] -= db["challenges"][challenge_id]["points"]

11

12 # Delete challenge dictionary

13 del db["challenges"][challenge_id]

14

15 flash("Challenge removed!")

16 return redirect(url_for('index'))

We’ll allow admins to start and stop the competition with two routes that toggle a value in our
database:

1 @app.route("/admin/competition-start")

2 @web.authenticated

3 @admin_only

4 def admin_start_competition():

5 db["competition_started"] = True

6

7 flash("Competition started!")

8 return redirect(url_for('index'))

9

10 @app.route("/admin/competition-stop")

11 @web.authenticated

12 @admin_only

13 @competition_running

14 def admin_end_competition():

15 db["competition_started"] = False

16

17 flash("Competition ended!")

18 return redirect(url_for('index'))

Build a team technical challenge website with replit.web 372

Finally, we’ll define an admin route that deletes and reinitializes the application’s general and user
databases. This will be useful for running multiple competitions on the same app, and for debugging!

1 @app.route('/admin/db-flush')

2 @web.authenticated

3 @admin_only

4 def flush_db():

5 del db["challenges"]

6 del db["teams"]

7 del db["competition_started"]

8

9 for _, user in users.items():

10 user["team"] = None

11

12 db_init()

13

14 return redirect(url_for("index"))

If we add any additional keys or values to either of our databases, we will need to remember to
delete them in this function.

Challenge functionality

Finally, we need to add functionality that will allow users to solve challenges and score points. Add
the following code below your admin routes:

1 # Challenge functionality

2 @app.route("/challenge/<challenge_id>", methods=["GET", "POST"])

3 @web.authenticated

4 @competition_running

5 def challenge(challenge_id):

6

7 form = ChallengeSolveForm(request.form)

8

9 if request.method == "POST" and form.validate():

10

11 if bcrypt.check_password_hash(

12 db["challenges"][challenge_id]["code"],

13 form.code.data

14):

15 db["teams"][users.current["team"]]["challenges_solved"].append(challenge\

16 _id)

Build a team technical challenge website with replit.web 373

17 db["teams"][users.current["team"]]["score"] += db["challenges"][challeng\

18 e_id]["points"]

19 flash("Challenge solved!")

20 else:

21 flash("Wrong challenge code!")

22

23 return render_template("challenge.html",

24 form = form,

25 challenge_id = challenge_id,

26 **context())

This function is very similar to team_join(). The main difference is that we will be hosting this
form on the challenge description page, so we can fetch the challenge_id from the URL rather than
asking the user which challenge they’re submitting a code for in the form.

Building the web application front-end

We have a fully functional application back-end, but without some front-end pages, our users will
have to join teams and submit challenge solutions using curl³¹⁸. So let’s create an interface for our
back-end using HTML and Jinja³¹⁹, Flask’s powerful front-end templating language.

Creating the HTML templates

First, we’ll need the following HTML files in a new directory called templates:

1 templates/

2 |__ admin/

3 | |__ challenge-create.html

4 |__ _macros.html

5 |__ challenge.html

6 |__ index.html

7 |__ layout.html

8 |__ leaderboard.html

9 |__ team-create.html

10 |__ team-join.html

11 |__ team.html

³¹⁸https://curl.se/
³¹⁹https://jinja.palletsprojects.com/en/3.0.x/templates/

https://curl.se/
https://jinja.palletsprojects.com/en/3.0.x/templates/
https://curl.se/
https://jinja.palletsprojects.com/en/3.0.x/templates/

Build a team technical challenge website with replit.web 374

HTML templates

Once you’ve created these files, let’s populate them, starting with templates/layout.html:

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>Challenge Leaderboard</title>

5 </head>

6 <body>

7 {% with messages = get_flashed_messages() %}

8 {% if messages %}

9 <ul class=flashes>

10 {% for message in messages %}

11 {{ message }}

12 {% endfor %}

13

14 {% endif %}

15 {% endwith %}

16

17 {% if name != None %}

18 <p>Logged in as {{ username }}</p>

19 {% endif %}

20

21

22 View challenges

23 View leaderboard

Build a team technical challenge website with replit.web 375

24 Create team

25 Join team

26

27

28

29 {% block body %}{% endblock %}

30 </body>

31 </html>

We’ll use this file as the base of all our pages, so we don’t need to repeat the same HTML. It contains
features we want on every page, such as flashed messages, an indication of who’s currently logged
in, and a global navigation menu. All subsequent pages will inject content into the body block³²⁰:

1 Next, we need to populate another helper file, `templates/_macros.html`:

2

3 ```html

4 {% macro render_field(field) %}

5 <dt>{{ field.label }}

6 <dd>{{ field(**kwargs)|safe }}

7 {% if field.errors %}

8 <ul class=errors>

9 {% for error in field.errors %}

10 {{ error }}

11 {% endfor %}

12

13 {% endif %}

14 </dd>

15 {% endmacro %}

This file defines the Jinja macro³²¹ render_field, which we’ll use to give all our form fields their
own error-handling, provided by WTForms.

Let’s define our home page now,with a list of challenges. Add the following code to templates/index.html:

³²⁰https://jinja.palletsprojects.com/en/3.0.x/templates/#child-template
³²¹https://jinja.palletsprojects.com/en/3.0.x/templates/#macros

https://jinja.palletsprojects.com/en/3.0.x/templates/#child-template
https://jinja.palletsprojects.com/en/3.0.x/templates/#macros
https://jinja.palletsprojects.com/en/3.0.x/templates/#child-template
https://jinja.palletsprojects.com/en/3.0.x/templates/#macros

Build a team technical challenge website with replit.web 376

1 {% extends "layout.html" %}

2 {% block body %}

3 <h1>Challenges</h1>

4

5 {% for id, challenge in challenges.items()|sort(attribute='1.points') %}

6

7 {{ challenge.name }} ({{ challenge.poi\

8 nts }} points)

9 {% if admin %}

10 | DELETE

11 {% endif %}

12

13 {% endfor %}

14 {% if admin %}

15 NEW CHALLENGE...

16 {% endif %}

17

18

19 {% if admin %}

20 <h1>Admin functions</h1>

21

22 {% if competition_running %}

23 End competition

24 {% else %}

25 Start competition

26 {% endif %}

27 Flush database

28

29 {% endif %}

30 {% endblock %}

Here, {% extends "layout.html" %} tells our templating engine to use layout.html as a base
template, and {% block body %} ... {% endblock %} defines the code to place inside layout.html’s
body block.

The following line will sort challenges in ascending order of points:

1 {% for id, challenge in challenges.items()|sort(attribute='1.points') %}

In addition, we use {% if admin %} blocks to include links to admin functionality that will only
display when an admin is logged in.

Next we define our team pages:

templates/team-create.html

Build a team technical challenge website with replit.web 377

1 {% extends "layout.html" %}

2 {% block body %}

3 {% from "_macros.html" import render_field %}

4 <h1>Create team</h1>

5 <form action="/team-create" method="post" enctype="multipart/form-data">

6 {{ render_field(form.name) }}

7 {{ render_field(form.password) }}

8 {{ form.csrf_token }}

9

10 {{ form.submit }}

11 </form>

12 {% endblock %}

templates/team-join.html

1 {% extends "layout.html" %}

2 {% block body %}

3 {% from "_macros.html" import render_field %}

4 <h1>Join team</h1>

5 <form action="/team-join" method="post">

6 {{ render_field(form.name) }}

7 {{ render_field(form.password) }}

8 {{ form.csrf_token }}

9

10 {{ form.submit }}

11 </form>

12 {% endblock %}

templates/team.html

1 {% extends "layout.html" %}

2 {% block body %}

3 <h1>{{ teams[team_id].name }}</h1>

4

5 <h2>Team members</h2>

6

7 {% for user in teams[team_id].members %}

8 {{ user }}

9 {% endfor %}

10

11

12 <h2>Challenges solved</h2>

Build a team technical challenge website with replit.web 378

13

14 {% for id in teams[team_id].challenges_solved %}

15

16 {{ challenges[id].name }}

17

18 {% endfor %}

19

20 {% endblock %}

You’ll notice that we’ve imported our render_function macro on these pages and used it to show
our various form fields. Each form also has a hidden field specified by {{ form.csrf_token }}. This
is a security feature WTForms provides to prevent cross-site request forgery³²² vulnerabilities.

Now we can create our challenge page:

templates/challenge.html

1 {% extends "layout.html" %}

2 {% block body %}

3 {% from "_macros.html" import render_field %}

4 <h1>{{ challenges[challenge_id].name }}</h1>

5

6 <p>{{ challenges[challenge_id].description }}</p>

7

8 <p>Points: {{ challenges[challenge_id].points }}</p>

9

10 {% if user_team != None and challenge_id not in teams[user_team]["challenges_sol\

11 ved"] %}

12 <form action="/challenge/{{challenge_id}}" method="post">

13 {{ render_field(form.code) }}

14 {{ form.csrf_token }}

15

16 {{ form.submit }}

17 </form>

18 {% endif %}

19 {% endblock %}

Then our challenge creation page (inside the templates/admin directory):

templates/admin/challenge-create.html

³²²https://owasp.org/www-community/attacks/csrf

https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-community/attacks/csrf

Build a team technical challenge website with replit.web 379

1 {% extends "layout.html" %}

2 {% block body %}

3 {% from "_macros.html" import render_field %}

4 <h1>Create challenge</h1>

5 <form action="/admin/challenge-create" method="post" enctype="multipart/form-dat\

6 a">

7 {{ render_field(form.name) }}

8 {{ render_field(form.description) }}

9 {{ render_field(form.points) }}

10 {{ render_field(form.code) }}

11 {{ form.csrf_token }}

12

13 {{ form.submit }}

14 </form>

15 {% endblock %}

We’ve referred to a lot of different variables in our front-end templates. Flask’s Jinja templating
framework allows us to pass the variables we need into render_template(), as we did when building
the application backend. Most pages needed a form, and some pages, such as challenge and team,
needed a challenge or team ID. In addition, we unpack³²³ the return value of a function named
context to all of our rendered pages. Define this function now with our other helper functions in
main.py, just below in_team:

1 def context():

2 return {

3 "username": web.auth.name,

4 "user_team": in_team(web.auth.name),

5 "admin": is_admin(web.auth.name),

6 "teams": db["teams"],

7 "challenges": db["challenges"],

8 "competition_running": db["competition_started"]

9 }

This will give every page most of the application’s state. If we find we need another piece of state
later, we can add it to the context helper function, and it will be available to all our pages.

Importantly, we’re using a function rather than a static dictionary so that we can get the most up-
to-date application state every time we serve a page.

Before we move on, we should change our app’s home page from the initial demo version we made
at the beginning of this tutorial to a proper page. Find the index() function and replace it with this
code:

³²³https://realpython.com/python-kwargs-and-args/#unpacking-with-the-asterisk-operators

https://realpython.com/python-kwargs-and-args/#unpacking-with-the-asterisk-operators
https://realpython.com/python-kwargs-and-args/#unpacking-with-the-asterisk-operators

Build a team technical challenge website with replit.web 380

1 @app.route("/")

2 def index():

3 return render_template("index.html",

4 **context())

You’ll notice we’ve removed the @web.authenticated decorator. This will allow unauthenticated
users to get a glimpse of our site before being asked to log in. replit.web will prompt them to log
in as soon as they attempt to access an authenticated page.

Building the leaderboard

We’ve left out a key part of our application: the leaderboard showing which team is winning! Let’s
add the leaderboard frontend now,with the followingHTML and Jinja code in templates/leaderboard.html:

1 {% extends "layout.html" %}

2 {% block body %}

3 <h1>Leaderboard</h1>

4

5 {% for id, team in teams.items()|sort(attribute='1.score', reverse=True) %}

6 <li {% if id == user_team %}style="font-weight: bold"{% endif %}>

7 {{ team.name }}: {{ team.score }} points

8

9 {% endfor %}

10

11 {% endblock %}

Similar to the list of challenges on our home page, we use Jinja’s sort³²⁴ filter to order the teams from
highest to lowest score.

1 {% for id, team in teams.items()|sort(attribute='1.score', reverse=True) %}

We also use an if block to show the name of the current user’s team in bold.

Finally, we can add one last route to main.py, just above the line web.run(app):

1 @app.route("/leaderboard")

2 def leaderboard():

3 return render_template("leaderboard.html",

4 **context())

We’re leaving this one unauthenticated as well, so that spectators can see how the competition’s
going.

³²⁴https://jinja.palletsprojects.com/en/3.0.x/templates/#jinja-filters.sort

https://jinja.palletsprojects.com/en/3.0.x/templates/#jinja-filters.sort
https://jinja.palletsprojects.com/en/3.0.x/templates/#jinja-filters.sort

Build a team technical challenge website with replit.web 381

Using the app

We’re done! Run your repl now to see your app in action. As your user account will be a site admin,
you may need to enlist a couple of friends to test out all the app’s functionality.

For best results, open your repl’s web page in a new tab.

Open in new tab button

If you run into unexplained errors, youmay need to clear your browser cookies, or flush the database.

Where next?

We’ve built a CRUD³²⁵ application with a fair amount of functionality, but there’s still room for
improvement. Some things you might want to add include:

• CSS styling.
• More admin functionality, such as adjusting scores, banning users and teams, and setting team
size limitations.

• File upload, for challenge files and/or team avatars.
• Time-limited competitions, with a countdown.
• Badges/achievements for things like being the first team to solve a given challenge.
• A place for teams to submit challenge solution write-ups.

And of course, you can also use your site to host a competition right now.

Next Tutorial

Up next, we’re going to take a look at how to build a paid content site with replit.web and Stripe
for checkout. When complete, the site will serve as an e-commerce store that can be used to sell a
variety of goods online. Users of the store will also be able to keep a record of their past purchases
on the site.
³²⁵https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

Build a paid content site with
replit.web and Stripe
In this tutorial, we’ll combine replit.web and Stripe to build a digital content storefront. Anyone
with a Replit account will be able to log into our website and purchase premium PDFs. Our site will
also keep track of what each user has purchased, so they can build up a library.

By the end of this tutorial, you’ll be able to:

• Build a dynamic web application with replit.web.
• Use Stripe³²⁶ to sell digital content.

Paid content site functionality

click to open gif ³²⁷

³²⁶https://stripe.com/
³²⁷https://docs.replit.com/images/tutorials/29-paid-content-site/site-functionality.gif

https://stripe.com/
https://docs.replit.com/images/tutorials/29-paid-content-site/site-functionality.gif
https://stripe.com/
https://docs.replit.com/images/tutorials/29-paid-content-site/site-functionality.gif

Build a paid content site with replit.web and Stripe 383

Getting started

To get started, create a Python repl.

Create python repl

Our application will have the following functionality:

• Users can log in with their Replit accounts.
• Users can purchase PDFs.
• Users can view free PDFs and PDFs that they’ve previously purchased.
• Administrators can upload new PDFs.

We’ve covered both replit.web and Stripe in previous tutorials, so some aspects of the following
may be familiar if you’ve built a brick shop³²⁸ or a technical challenge website³²⁹.

We’ll start our app off with the following import statements in main.py:

³²⁸https://docs.replit.com/tutorials/20-online-store-checkout-process
³²⁹https://docs.replit.com/tutorials/28-technical-challenge-site

https://docs.replit.com/tutorials/20-online-store-checkout-process
https://docs.replit.com/tutorials/28-technical-challenge-site
https://docs.replit.com/tutorials/20-online-store-checkout-process
https://docs.replit.com/tutorials/28-technical-challenge-site

Build a paid content site with replit.web and Stripe 384

1 import os, shutil

2 import stripe

3 from flask import Flask, render_template, render_template_string, flash, redirect, u\

4 rl_for, request, jsonify

5 from flask.helpers import send_from_directory

6 from werkzeug.utils import secure_filename

7 from replit import db, web

8 from functools import wraps

Here we’re importing most of what we’ll need for our application:

1. Python’s os and shutil packages, which provide useful functions for working with files and
directories.

2. Stripe’s Python library.
3. Flask, our web framework and the heart of the application.
4. A Flask helper function send_from_directory, which will allow us to send PDFs to users.
5. A function secure_filename from the Werkzeug WSGI (which Flask is built on) that we’ll use
when admins upload PDFs and other files.

6. Replit’s web framework and Replit DB integration, which we’ll use for user authentication and
persistent data storage.

7. The wraps tool from Python’s functools, which we’ll use to make authorization decorators for
restricting access to sensitive application functionality.

Now that the imports are out of the way, let’s start on our application scaffold. Add the following
code to main.py:

1 app = Flask(__name__,

2 static_folder='static',

3 static_url_path='')

This code initializes our Flask application. We’ve added a static_folder and static_url_path so
that we can serve static files directly from our repl’s file pane without writing routing code for each
file. This will be useful for things like images and stylesheets.

Add the following code to initialize your application’s secret key:

1 # Secret key

2 app.config["SECRET_KEY"] = os.environ["SECRET_KEY"]

Our secret key will be a long, random string. You can generate one in your repl’s Python console
with the following two lines of code:

Build a paid content site with replit.web and Stripe 385

1 import random, string

2 ''.join(random.SystemRandom().choice(string.ascii_uppercase + string.digits) for _ i\

3 n range(20))

Random string

Rather than putting this value directly into our code, we’ll retrieve it from an environment variable³³⁰.
This will keep it out of source control and is good practice for sensitive data.

In your repl’s Secrets tab, add a new key named SECRET_KEY and enter the random string you just
generated as its value.

Repl secrets

Once that’s done, return to main.py and add the code below to initialize our Replit database:

³³⁰https://en.wikipedia.org/wiki/Environment_variable

https://en.wikipedia.org/wiki/Environment_variable
https://en.wikipedia.org/wiki/Environment_variable

Build a paid content site with replit.web and Stripe 386

1 # Database setup

2 def db_init():

3 if "content" not in db.keys():

4 db["content"] = {}

5

6 if "orders" not in db.keys():

7 db["orders"] = {}

8

9 # Create directories

10 if not os.path.exists("static"):

11 os.mkdir("static")

12

13 if not os.path.exists("content"):

14 os.mkdir("content")

15

16 db_init()

Replit’s Database³³¹ can be thought of and used as one big Python dictionary that we can access
with db. Any values we store in db will persist between repl restarts.

We’ve written a function to initialize the database as wemaywant to do it again if we need to refresh
our data during testing. Whenever we initialize our database, we will also create the content and
static directories, which will contain user-uploaded files.

Next we need to create our UserStore³³² (a secondary database keyed by username), and list of
admins:

1 users = web.UserStore()

2

3 ADMINS = ["YOUR-REPLIT-USERNAME-HERE"]

Make sure to replace the contents of the ADMINS list with your Replit username.

Finally, let’s make our root page. Add the following code, and then run your repl.

³³¹https://docs.replit.com/hosting/database-faq
³³²https://replit-py.readthedocs.io/en/latest/api.html

https://docs.replit.com/hosting/database-faq
https://replit-py.readthedocs.io/en/latest/api.html
https://docs.replit.com/hosting/database-faq
https://replit-py.readthedocs.io/en/latest/api.html

Build a paid content site with replit.web and Stripe 387

1 # Main app

2 @app.route("/")

3 @web.authenticated

4 def index():

5 return f"Hello {web.auth.name}"

6

7 web.run(app)

Because we’ve added the @web.authenticated function decorator³³³ to our index page, it will only
be available to logged-in users. You should see this now, as your app will show a login button. Click
on that button, and authorize your application to use Replit authentication in the window that pops
up.

Login button

Having done that, you should now see the greeting we implemented above. If you send your repl to
a friend, they will also be able to log in and see their Replit username on the greeting message.

Content upload and other admin functionality

Before we do anything else with our site, we need to have some PDFs to sell. While we could
manually upload our PDFs to our repl and write code to add each one to the database, it will make
our site more user-friendly if we include an upload form for this purpose.

This upload form should only be accessible by admins, so we can enforce some level of quality
control. We’ll also create a route that allows admins to refresh the application database.

Access control

Add the following functions to main.py, just below the line where you’ve assigned ADMINS:

³³³https://realpython.com/primer-on-python-decorators/

https://realpython.com/primer-on-python-decorators/
https://realpython.com/primer-on-python-decorators/

Build a paid content site with replit.web and Stripe 388

1 # Helper functions

2 def is_admin(username):

3 return username in ADMINS

4

5 # Auth decorators

6 def admin_only(f):

7 @wraps(f)

8 def decorated_function(*args, **kwargs):

9

10 if not is_admin(web.auth.name):

11 flash("Permission denied.", "warning")

12 return redirect(url_for("index"))

13

14 return f(*args, **kwargs)

15

16 return decorated_function

The code in the second function may look a bit strange if you haven’t written your own decorators
before. Here’s how it works: admin_only is the name of our decorator. You can think of decorators as
functions that take other functions as arguments. (The two code snippets below are for illustration
and not part of our program.) Therefore, if we write the following:

1 @admin_only

2 def admin_function():

3 return f"Hello admin"

4

5 admin_function()

it will be roughly equivalent to:

1 def admin_function():

2 return f"Hello admin"

3

4 admin_only(admin_function)

So whenever admin_function gets called, the code we’ve defined in decorated_function will
execute before anything we define in admin_function. This means we don’t have to include an if

not is_admin check in every piece of admin functionality. As per the code, if a non-admin attempts
to access restricted functionality, our app will flash³³⁴ a warning message and redirect them to the
home page.

Now we can create the following admin routes below the definition of the index function:

³³⁴https://flask.palletsprojects.com/en/2.0.x/patterns/flashing/

https://flask.palletsprojects.com/en/2.0.x/patterns/flashing/
https://flask.palletsprojects.com/en/2.0.x/patterns/flashing/

Build a paid content site with replit.web and Stripe 389

1 # Admin functionality

2 @app.route('/admin/content-create', methods=["GET", "POST"])

3 @web.authenticated

4 @admin_only

5 def content_create():

6 pass

7

8 @app.route('/admin/db-flush')

9 @web.authenticated

10 @admin_only

11 def flush_db():

12 pass

Note that both of these functions are protected with the @web.authenticated and @admin_only

decorators, restricting their use to logged-in admins.

The first function will let our admins create content, and the second will allow us to flush the
database. While the second function will be useful during development, it’s not something we’d
want to use in a finished application, as our database will contain records of user payments.

Content creation form

Before we can fill in the code for content creation, we need to create the web form our admins will
use. As the form creation code will include a lot of information and functionality and require several
special imports, we’re going to put it in its own file so we can keep a navigable codebase. In your
repl’s files pane, create forms.py.

Build a paid content site with replit.web and Stripe 390

Create forms.py file

Enter the following import statements at the top of forms.py:

1 from flask_wtf import FlaskForm

2 from flask_wtf.file import FileField, FileRequired, FileAllowed

3 from wtforms import StringField, TextAreaField, SubmitField, FloatField, ValidationE\

4 rror

5 from wtforms.validators import InputRequired, NumberRange, Length

6 from replit import db

Here we’re importing from WTForms³³⁵, an extensive library for building web forms, and Flask
WTF³³⁶, a library which bridges WTForms and Flask. We’re also importing our Replit database,
which we’ll need for uniqueness validations.

The structure of our forms is dictated by the structure of our database. In our db_init function,
we defined two dictionaries, “content” and “orders”. The former will contain entries for each of the
PDFs we have for sale. These entries will contain the PDF’s filename as well as general metadata.
Thus, our “content” data structure will look something like this:

³³⁵https://wtforms.readthedocs.io/en/2.3.x/
³³⁶https://flask-wtf.readthedocs.io/en/0.15.x/

https://wtforms.readthedocs.io/en/2.3.x/
https://flask-wtf.readthedocs.io/en/0.15.x/
https://flask-wtf.readthedocs.io/en/0.15.x/
https://wtforms.readthedocs.io/en/2.3.x/
https://flask-wtf.readthedocs.io/en/0.15.x/

Build a paid content site with replit.web and Stripe 391

1 {

2 "content": {

3 "ID": {

4 "name": "NAME",

5 "description": "DESCRIPTION",

6 "file": "PDF_FILENAME",

7 "preview_image": "IMAGE_FILENAME",

8 "price": 5,

9 }

10 }

11 }

The ID value will be the content’s name, all-lowercase, with spaces replaced by hyphens, so we can
use it in our app’s URLs. Let’s create a function that turns names into IDs, in forms.py, just below
our imports:

1 def name_to_id(name):

2 return name.lower().replace(" ", "-")

Nowwe can create our form.With FlaskWTF, wemodel a form as a class inheriting from FlaskForm.
This class takes in the value of Flask’s request.form and applies validations to the fields therein. Add
the following class definition to the bottom of forms.py:

1 class ContentCreateForm(FlaskForm):

2 name = StringField(

3 "Title",

4 validators=[

5 InputRequired(),

6 Length(3)

7]

8)

9

10 description = TextAreaField(

11 "Description",

12 validators=[InputRequired()]

13)

14

15 file = FileField(

16 "PDF file",

17 validators=[

18 FileRequired(),

19 FileAllowed(['pdf'], "PDFs only.")

Build a paid content site with replit.web and Stripe 392

20]

21)

22

23 image = FileField(

24 "Preview image",

25 validators=[

26 FileRequired(),

27 FileAllowed(['jpg', 'jpeg', 'png', 'svg'], "Images only.")

28]

29)

30

31 price = FloatField(

32 "Price in USD (0 = free)",

33 validators=[

34 InputRequired(),

35 NumberRange(0)

36]

37)

38

39 submit = SubmitField("Create content")

40

41 def validate_name(form, field):

42 if name_to_id(field.data) in db["content"].keys():

43 raise ValidationError("Content name already taken.")

When admins create content, they’ll specify a name, a description, and a price, as well as upload both
the PDF and a preview image. We’ve used WTForm’s validators to restrict the file types that can
be uploaded for each. Should we decide to branch out from selling PDFs in the future, we can add
additional file extensions to the file field’s FileAllowed validator. We could also make individual
fields optional by removing their InputRequired() or FileRequired() validators.

The final part of our form is a custom validator to reject new PDFs with IDs that match existing
PDFs. Because we’re validating on ID rather than name, admins won’t be able to create PDFs with
the same name but different capitalization (e.g. “Sherlock Holmes” and “SHERLOCK HOLMES”).

We’ve finished creating our form class. Now we can return to main.py and import the class with the
following import statement, which you can add just below the other imports at the top of the file.

1 from forms import name_to_id, ContentCreateForm

Note that we’ve also imported name_to_id, which we’ll use when populating the database.

Build a paid content site with replit.web and Stripe 393

Admin routes

We can now use our form to implement our content creation route. Populate the content_create

function with this code:

1 # Admin functionality

2 @app.route('/admin/content-create', methods=["GET", "POST"])

3 @web.authenticated

4 @admin_only

5 def content_create():

6

7 form = ContentCreateForm()

8

9 if request.method == "POST" and form.validate():

10 content_name = form.name.data

11 content_id = name_to_id(content_name)

12 content_price = form.price.data

13

14 content_file = form.file.data

15 content_filename = secure_filename(content_file.filename)

16 content_file.save(os.path.join('content', content_filename))

17

18 image_file = form.image.data

19 image_filename = secure_filename(image_file.filename)

20 image_file.save(os.path.join('static', image_filename))

21

22 content_paywalled = content_price > 0

23

24 # Construct content dictionary

25 db["content"][content_id] = {

26 "name": content_name,

27 "description": form.description.data,

28 "filename": content_filename,

29 "preview_image": image_filename,

30 "paywalled": content_paywalled,

31 "price": content_price,

32 }

33

34 flash("Content created!")

35 return redirect(url_for('content', content_id=content_id))

36

37 return render_template("admin/content-create.html",

38 form = form,

Build a paid content site with replit.web and Stripe 394

39 **context())

First, we create an instance of ContentCreateForm. This will automatically use the values in
request.form, including the uploaded files. We then check whether the current request is an HTTP
POST, and we call validate() on the form. Behind the scenes, this method will run all of our field
validators, and return error messages to the user for fields that fail validation. It will only return
True once all fields validate.

Once we know we’ve got valid form input, we can save its data to our database. We construct our
content’s ID using the helper function from forms.py, store our content’s price value, and then save
our PDF and image files to the content and static directories. Saving images to static will allow
Flask to serve them without us writing additional code. We’ll need custom code for PDFs, however,
as we need to ensure they’re only accessible to paying customers.

We use the variable content_paywalled to determine whether this PDF should be available for free
or behind a paywall.

Finally, we save our content’s details to the database and redirect the creator to the content page,
which we’ll build in the next section.

At the bottom of the function, we render our content-create page and tell it which form to use.
This will happen regardless of whether the initiating request was a GET or a POST. We’ll create the
template and define the context function when we build the application front-end.

Next, we need to create our database flushing functionality. Populate the flush_db function with
the following code:

1 @app.route('/admin/db-flush')

2 @web.authenticated

3 @admin_only

4 def flush_db():

5 # clear db

6 del db["content"]

7 del db["orders"]

8

9 # clear users

10 for _, user in users.items():

11 user["content_library"] = []

12

13 # delete content and images

14 shutil.rmtree("content")

15 shutil.rmtree("static")

16

17 # reinit

18 db_init()

Build a paid content site with replit.web and Stripe 395

19

20 return redirect(url_for("index"))

After deleting all database content and uploaded files, we call db_init() to start afresh. Keep in
mind that this function should not be used if you’re storing real user data unless you’ve made a
backup.

Content viewing and paywalls

Now that our site admins can upload PDFs, we need a way for users to view them. We’ll start by
creating another helper function, just below the definition of is_admin:

1 def owns_content(username, content_id):

2 if "content_library" in users[username].keys() and users[username]["content_libr\

3 ary"] is not None:

4 return content_id in users[username]["content_library"]

We have to do several checks on our user’s content_library, as it can be in a few different states
– the key might not exist, or it might be set to None, or it might be a list. We’ll use this function to
determine which content has been purchased by a given user and thus avoid writing all these checks
again.

Now we need to create our application’s content-viewing routes. We’ll start by rewriting the / route
so that it renders a template rather than a greeting string. This page will contain a list of PDFs.
Change the code in index to the following:

1 # Main app

2 @app.route("/")

3 @web.authenticated

4 def index():

5 return render_template("index.html",

6 **context())

Then we’ll write a route that displays individual PDF metadata, by adding this function just below
the definition of index:

Build a paid content site with replit.web and Stripe 396

1 @app.route("/content/<content_id>")

2 @web.authenticated

3 def content(content_id):

4 return render_template("content.html",

5 content_id=content_id,

6 **context())

The content_id value will be the same ID that we’re using in our database. This page will contain
the content’s name, preview image, description, and either a download link, or a purchase link,
depending on whether the PDF is paywalled, and whether the current user has purchased it.

Lastly, we need a route that handles downloading actual PDFs. Add the following code just below
the content function definition:

1 @app.route("/content-file/<content_id>")

2 @web.authenticated

3 def content_file(content_id):

4

5 content = db["content"][content_id]

6

7 if not content["paywalled"] or owns_content(web.auth.name, content_id):

8 return send_from_directory("content", path=content["filename"])

9 else:

10 return "Access denied."

If the current user owns this PDF, or it’s not paywalled, we use Flask’s send_from_directory³³⁷ to
allow them to download it. Otherwise, we return an error message.

Creating the application frontend

We have most of our application back-end, so now let’s create the front-end. We’ll do this using
HTML and Jinja³³⁸, Flask’s front-end templating language.

First, let’s create the following HTML files in a new directory called templates:

³³⁷https://flask.palletsprojects.com/en/2.0.x/api/#flask.send_from_directory
³³⁸https://jinja.palletsprojects.com/en/3.0.x/templates/

https://flask.palletsprojects.com/en/2.0.x/api/#flask.send_from_directory
https://jinja.palletsprojects.com/en/3.0.x/templates/
https://flask.palletsprojects.com/en/2.0.x/api/#flask.send_from_directory
https://jinja.palletsprojects.com/en/3.0.x/templates/

Build a paid content site with replit.web and Stripe 397

1 templates/

2 |__ admin/

3 | |__ content-create.html

4 |__ _macros.html

5 |__ content.html

6 |__ index.html

7 |__ layout.html

Folder structure

Once you’ve created these files, let’s populate them, starting with templates/layout.html:

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>Books and Manuscripts</title>

5 </head>

6 <body>

7 {% with messages = get_flashed_messages() %}

8 {% if messages %}

9 <ul class=flashes>

10 {% for message in messages %}

11 {{ message }}

12 {% endfor %}

13

Build a paid content site with replit.web and Stripe 398

14 {% endif %}

15 {% endwith %}

16

17 {% if name != None %}

18 <p>Logged in as {{ username }}</p>

19 {% endif %}

20

21 {% block body %}{% endblock %}

22 </body>

23 </html>

We’ll use this file as the base of all our pages, so we don’t need to repeat the same HTML. It contains
features we want on every page, such as flashed messages, and an indication of who’s currently
logged in. All subsequent pages will inject content into the body block:

1 {% block body %}{% endblock %}

Next, we need to populate another helper file, templates/_macros.html:

1 {% macro render_field(field) %}

2 <dt>{{ field.label }}

3 <dd>{{ field(**kwargs)|safe }}

4 {% if field.errors %}

5 <ul class=errors>

6 {% for error in field.errors %}

7 {{ error }}

8 {% endfor %}

9

10 {% endif %}

11 </dd>

12 {% endmacro %}

This file defines the Jinja macro³³⁹ render_field, which we’ll use to provide our form fields with
error-handling, provided by WTForms.

We’ll use this macro in templates/admin/content-create.html, which we’ll populate with the
following code:

³³⁹https://jinja.palletsprojects.com/en/3.0.x/templates/#macros

https://jinja.palletsprojects.com/en/3.0.x/templates/#macros
https://jinja.palletsprojects.com/en/3.0.x/templates/#macros

Build a paid content site with replit.web and Stripe 399

1 {% extends "layout.html" %}

2 {% block body %}

3 {% from "_macros.html" import render_field %}

4 <h1>Upload content item</h1>

5 <form action="/admin/content-create" method="post" enctype="multipart/form-data">

6 {{ render_field(form.name) }}

7 {{ render_field(form.description) }}

8 {{ render_field(form.file) }}

9 {{ render_field(form.image) }}

10 {{ render_field(form.price) }}

11 {{ form.csrf_token }}

12

13 {{ form.submit }}

14 </form>

15 {% endblock %}

Here, {% extends "layout.html" %} tells our templating engine to use layout.html as a base template,
and {% block body %} ... {% endblock %} defines the code to place inside layout.html’s body
block.

Our render_function macro will be used to show our different form fields – some of these will be
text input fields, while others will be file upload fields. Our form also has a hidden field specified by
{{ form.csrf_token }}. This is a security feature WTForms provides to prevent cross-site request
forgery³⁴⁰ vulnerabilities.

Let’s define our home page now,with a list of content items. Add the following code to templates/index.html:

1 {% extends "layout.html" %}

2 {% block body %}

3 <h1>Marketplace</h1>

4

5 {% for id, content in content.items() %}

6

7 {{ content.name }}

8 {% if content.paywalled %}

9 {% if id in my_library %}

10 (PURCHASED)

11 {% else %}

12 ({{ "${:,.2f}".format(content.price) }})

13 {% endif %}

14 {% endif %}

15

16 {% endfor %}

³⁴⁰https://owasp.org/www-community/attacks/csrf

https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-community/attacks/csrf

Build a paid content site with replit.web and Stripe 400

17 {% if admin %}

18 NEW CONTENT...

19 {% endif %}

20

21

22 {% if admin %}

23 <h1>Admin functions</h1>

24

25 Flush database

26

27 {% endif %}

28 {% endblock %}

We display each piece of content in a list. If an item is paywalled, we show its price if the current
user hasn’t already purchased it, or “(PURCHASED)” if they have.

In addition, we use {% if admin %} blocks to include links to admin functionality, such as content
creation and database flushing, that will only display when an admin is logged in.

The last page we need to create is templates/content.html, which will display information about
individual PDFs:

1 {% extends "layout.html" %}

2 {% block body %}

3 <h1>{{ content[content_id].name }}</h1>

4

5 <p>{{ content[content_id].description }}</p>

6 {% if content_id in my_library or not content[content_id].paywalled %}

7 Download PDF

8 {% else %}

9 <form action="/checkout/{{ content_id }}" method="POST">

10 <button type="submit" id="checkout-button">Buy {{ content[content_id].name }\

11 } for {{ "${:,.2f}".format(content[content_id].price) }}</button>

12 </form>

13 {% endif %}

14 {% endblock %}

As with the home page, we display different parts of the page depending on whether the content is
paywalled, and whether the current user owns it. If the user must purchase the PDF, we include a
single-button form that posts to /checkout/<content_id>, an application route we’ll create in the
next section.

We’ve referred to a lot of different variables in our front-end templates. Flask’s Jinja templating
framework allows us to pass the variables we need into render_template, as we did when building

Build a paid content site with replit.web and Stripe 401

the application backend. Our content creation page needed a form, and our content viewing pages
needed an ID. In addition, we unpack the return value of a function named context to all of our
rendered pages. Define this function now with our other helper functions in main.py, just below
owns_content:

1 def context():

2 if "content_library" in users.current.keys() and users.current["content_library"\

3] is not None:

4 my_library = users.current["content_library"]

5 else:

6 my_library = []

7

8 return {

9 "username": web.auth.name,

10 "my_library": my_library,

11 "admin": is_admin(web.auth.name),

12 "content": db["content"]

13 }

This will give every page most of the application’s state, including the full content dictionary and
the current user’s library. If we find we need another piece of state later, we can add it to the context
helper function, and it will be available to all our pages.

Run your repl now and add some content. For best results, open the site in a new tab, rather than
using it in your repl’s browser.

Open in new window

If you add free PDFs, you’ll be able to download them, but you won’t be able to purchase paywalled
PDFs yet.

Build a paid content site with replit.web and Stripe 402

Free pdf download

Integrating with Stripe

Our application is fully functional for free PDFs. To have users pay for premium PDFs, we’ll integrate
Stripe Checkout³⁴¹. This will save us the trouble and risk of developing our own payment gateway
or storing users’ card details.

To use Stripe Checkout, youwill need an activated Stripe account. Create one now at https://stripe.com³⁴²
if you haven’t already.

Once you’ve created a Stripe account, add the following code near the top of main.py, just below
the import statements:

1 # Stripe setup

2 stripe.api_key = os.environ["STRIPE_KEY"]

3

4 DOMAIN = "YOUR-REPL-URL-HERE"

You can find your Stripe API keys on this page of the developer dashboard³⁴³. Make sure that you’re

³⁴¹https://stripe.com/en-gb-us/payments/checkout
³⁴²https://stripe.com/
³⁴³https://dashboard.stripe.com/test/apikeys

https://stripe.com/en-gb-us/payments/checkout
https://stripe.com/
https://dashboard.stripe.com/test/apikeys
https://stripe.com/en-gb-us/payments/checkout
https://stripe.com/
https://dashboard.stripe.com/test/apikeys

Build a paid content site with replit.web and Stripe 403

in test mode and copy the secret key to your clipboard. Then return to your repl and create an
environment variable called STRIPE_KEY with the value you just copied from Stripe.

Stripe Key

You will also need to replace the value of DOMAIN with your repl’s root URL. You can get this URL
from the in-repl browser.

Repl URL

Stripe Checkout

Stripe provides detailed technical documentation and code snippets in a variety of languages, so
setting up basic integration is largely a matter of copying and adapting these code snippets to
our needs. We’ll start by creating the /checkout/<content_id> route. This will create a new Stripe
checkout session³⁴⁴ and redirect the user to a Stripe payment page. Add the following code below
your content_file function definition:

³⁴⁴https://stripe.com/docs/api/checkout/sessions

https://stripe.com/docs/api/checkout/sessions
https://stripe.com/docs/api/checkout/sessions

Build a paid content site with replit.web and Stripe 404

1 # Stripe integration

2 @app.route("/checkout/<content_id>", methods=["POST"])

3 @web.authenticated

4 def checkout(content_id):

5

6 # Proceed to checkout

7 try:

8 checkout_session = stripe.checkout.Session.create(

9 line_items=[

10 {

11 "price_data": {

12 "currency": "usd",

13 "product_data": {

14 "name": db["content"][content_id]["name"],

15 "images": [DOMAIN + "/" + db["content"][content_id]["pre\

16 view_image"]]

17 },

18 'unit_amount': int(db["content"][content_id]["price"]*100),

19 },

20 "quantity": 1

21 },

22],

23 payment_method_types=[

24 'card',

25],

26 mode='payment',

27 success_url=DOMAIN + '/success?session_id={CHECKOUT_SESSION_ID}',

28 cancel_url=DOMAIN + '/cancel'

29)

30 except Exception as e:

31 return str(e)

32

33 # Record order

34 order_id = checkout_session.id

35 db["orders"][order_id] = {

36 "content_id": content_id,

37 "buyer": web.auth.name

38 }

39

40 return redirect(checkout_session.url, code=303)

This code is adapted from Stripe’s sample integration Python code³⁴⁵. It initiates a checkout from the

³⁴⁵https://stripe.com/docs/checkout/integration-builder?server=python

https://stripe.com/docs/checkout/integration-builder?server=python
https://stripe.com/docs/checkout/integration-builder?server=python

Build a paid content site with replit.web and Stripe 405

pricing and product details we provide and redirects the user to Stripe’s checkout website to pay. If
payment is successful, it sends the user to a success_url on our site; otherwise, it sends to the user
to a cancel_url. We’ll define both of these shortly.

We’ve made two key changes to the sample code. First, we’ve included the details for our content
item in line_items:

1 line_items=[

2 {

3 "price_data": {

4 "currency": "usd",

5 "product_data": {

6 "name": db["content"][content_id]["name"],

7 "images": [DOMAIN + "/" + db["content"][content_id]["preview_image"]]

8 },

9 'unit_amount': int(db["content"][content_id]["price"]*100),

10 },

11 "quantity": 1

12 },

13],

Rather than defining individual products on Stripe’s side, we’re programmatically constructing our
products at checkout time. This saves us from having to add our PDF metadata in two places. We
provide our product’s name, and the full URL of its preview image, so both can be shown on the
Stripe Checkout page. As Stripe expects prices in cents, we multiply the price from our database by
100 before converting it to an integer.

The second change we’ve made to the sample code is to record the order details in our database. We
need to do this so that we can fulfill the order once it’s paid for.

1 # Record order

2 order_id = checkout_session.id

3 db["orders"][order_id] = {

4 "content_id": content_id,

5 "buyer": web.auth.name

6 }

We reuse Stripe’s Checkout Session³⁴⁶ object’s id as our order_id so that we can link the two later.

If you run your repl now, you should be able to reach the Stripe checkout page for any paywalled
content you’ve added. Don’t try to pay for anything yet though, as we still need to build order
fulfillment.
³⁴⁶https://stripe.com/docs/api/checkout/sessions/object

https://stripe.com/docs/api/checkout/sessions/object
https://stripe.com/docs/api/checkout/sessions/object

Build a paid content site with replit.web and Stripe 406

Paywall

Checkout page

Build a paid content site with replit.web and Stripe 407

Stripe fulfillment

As we’re selling digital goods, we can integrate fulfillment directly into our application by adding
purchased content to the buyer’s library as soon as payment has been made. We’ll do this with a
function called fulfill_order, which you can add just below the checkout function definition.

1 def fulfill_order(session):

2 # Get order details

3 content_id = db["orders"][session.id]["content_id"]

4 buyer = db["orders"][session.id]["buyer"]

5

6 # Add content to library

7 if session.payment_status == "paid" and not owns_content(buyer, content_id):

8 if users[buyer]["content_library"] is not None:

9 users[buyer]["content_library"].append(content_id)

10 else:

11 users[buyer]["content_library"] = [content_id]

This function takes a Stripe Checkout Session object, retrieves the corresponding order from our
database, and then adds the order’s content to the buyer’s library if a payment has been made, and
the buyer does not already own the content.

We’ll invoke this function from our /success route, which we’ll define just below it.

1 @app.route('/success', methods=['GET'])

2 @web.authenticated

3 def success():

4

5 # Get payment info from Stripe

6 session = stripe.checkout.Session.retrieve(request.args.get('session_id'))

7

8 # Abort if user is not buyer

9 if web.auth.name != db["orders"][session.id]["buyer"]:

10 return "Access denied."

11

12 fulfill_order(session)

13

14 return render_template_string(f'<html><body><h1>Thanks for your order, {web.auth\

15 .name}!</h1><p>Your purchase has been added to your library.</p></bo\

16 dy></html>')

Here we retrieve the session details from the session_id GET parameter Stripe passed to our app,
ensure that the current user is also the order buyer, and call fulfill_order. We then render a simple
success page. You can replace this with a full Jinja template if you want to make it a bit fancier.

Build a paid content site with replit.web and Stripe 408

We also need to define the /cancel route, used if the payment fails. This one is quite simple:

1 @app.route('/cancel', methods=['GET'])

2 @web.authenticated

3 def cancel():

4 return render_template_string("<html><body><h1>Order canceled.</h1></body></html\

5 >")

If you run your repl now, you should be able to purchase content. You can find test credit card
numbers on the Stripe integration testing³⁴⁷ documentation page. You can use any future date as the
expiry date and any CVV.

PDF purchased

click to open gif ³⁴⁸

Webhooks

A potential problem with the way we’re fulfilling orders is that a user might close the Stripe
Checkout tab or lose internet connectivity after their payment has been confirmed, but before they’re
redirected to our /success route. If this happens, we’ll have their money, but they won’t have their
PDF.
³⁴⁷https://stripe.com/docs/testing
³⁴⁸https://docs.replit.com/images/tutorials/29-paid-content-site/alice-purchased.gif

https://stripe.com/docs/testing
https://docs.replit.com/images/tutorials/29-paid-content-site/alice-purchased.gif
https://stripe.com/docs/testing
https://docs.replit.com/images/tutorials/29-paid-content-site/alice-purchased.gif

Build a paid content site with replit.web and Stripe 409

For this reason, Stripe provides an additional method for fulfilling orders, based on webhooks³⁴⁹. A
webhook is an HTTP route intended to be used by machines rather than people. Much like we’ve
created routes for our admins to upload PDFs, and our users to buy PDFs, we’ll now create a route
for Stripe’s bots to notify our application of completed payments.

First, you’ll need to create a webhook on your Stripe Dashboard. Visit the Webhooks³⁵⁰ page and
click Add endpoint. You should then see a page like this:

Add webhook

On this page, do the following:

1. For the Endpoint URL value, enter your repl’s URL, followed by /fulfill-hook.
2. Select the checkout.session.completed event from Select events to listen to.
³⁴⁹https://en.wikipedia.org/wiki/Webhook
³⁵⁰https://dashboard.stripe.com/test/webhooks

https://en.wikipedia.org/wiki/Webhook
https://dashboard.stripe.com/test/webhooks
https://en.wikipedia.org/wiki/Webhook
https://dashboard.stripe.com/test/webhooks

Build a paid content site with replit.web and Stripe 410

Webhook event

3. Click Add endpoint.

Stripe should then redirect you to your newwebhook’s details page. From here you can see webhook
details, logs and the signing secret. The signing secret is used to ensure that ourwebhook only accepts
requests from Stripe – otherwise, anyone could call it with spoofed data and complete orders without
paying. Reveal your webhook’s signing secret and copy it to your clipboard, then return to your repl.

Signing secret

We’ll use another environment variable here. Add the following code below your cancel function
definition:

1 endpoint_secret = os.environ['ENDPOINT_SECRET']

Then create an environment variable called ENDPOINT_SECRET with the value you just copied from
Stripe.

Build a paid content site with replit.web and Stripe 411

For our app’s webhook code, we can once again tweak Stripe’s sample code. We’ll use this order
fulfillment code³⁵¹ as a base. Add this code below your endpoint_secret assignment:

1 @app.route('/fulfill-hook', methods=['POST'])

2 def fulfill_webhook():

3 event = None

4 payload = request.data

5 sig_header = request.headers['STRIPE_SIGNATURE']

6

7 try:

8 event = stripe.Webhook.construct_event(

9 payload, sig_header, endpoint_secret

10)

11 except ValueError as e:

12 # Invalid payload

13 raise e

14 except stripe.error.SignatureVerificationError as e:

15 # Invalid signature

16 raise e

17

18 # Handle the event

19 if event['type'] == 'checkout.session.completed':

20 session = event['data']['object']

21

22 # Fulfill the purchase...

23 fulfill_order(session)

24 else:

25 print('Unhandled event type {}'.format(event['type']))

26

27 return jsonify(success=True)

After ensuring that the request we’ve received comes from Stripe, we retrieve the Checkout Session
object from Stripe’s checkout.session.completed event and use it to call fulfill_order.

If you run your repl now, you should be able to purchase a PDF, close the checkout page after your
payment is accepted but before being redirected, and still end up with the PDF in your library. You
can also view webhook invocation logs on the Stripe Dashboard³⁵².

³⁵¹https://stripe.com/docs/payments/checkout/fulfill-orders#fulfill
³⁵²https://dashboard.stripe.com/test/webhooks

https://stripe.com/docs/payments/checkout/fulfill-orders#fulfill
https://stripe.com/docs/payments/checkout/fulfill-orders#fulfill
https://dashboard.stripe.com/test/webhooks
https://stripe.com/docs/payments/checkout/fulfill-orders#fulfill
https://dashboard.stripe.com/test/webhooks

Build a paid content site with replit.web and Stripe 412

Stripe webhook success

Where next?

We’ve built a functional if fairly basic storefront for digital goods. If you’d like to continue with this
project, consider the following extensions:

• Improving the site’s appearance with custom CSS.
• Branching out from PDFs to other files, such as audio podcasts, videos, or desktop software.
• Providing a subscription option that gives users access to all PDFs for a limited time.
• Converting the site into a peer-to-peer marketplace where users can all upload and purchase
files from each other.

Next Tutorial

In the next tutorial, we’re going to take a look at how to build an email news digest app with Nix,
Python and Celery. To send emails in bulk the app will use the Mailgun API to avoid building an
email server on top of the Nix app. By the end of the tutorial, you would have learned how to use
Nix on Replit to set up a database, webserver, message broker and background task handlers.

Build an email news digest app with
Nix, Python and Celery
In this tutorial, we’ll build an application that sends regular emails to its users. Users will be able to
subscribe to RSS³⁵³ and Atom³⁵⁴ feeds, and will receive a daily email with links to the newest stories
in each one, at a specified time.

As this application will require a number of different components, we’re going to build it using the
power of Nix repls. By the end of this tutorial, you’ll be able to:

• Use Nix on Replit to set up a database, webserver, message broker and background task
handlers.

• Use Python Celery to schedule and run tasks in the background.
• Use Mailgun to send automated emails.
• Build a dynamic Python application with multiple discrete parts.

Getting started

To get started, sign in to Replit³⁵⁵ or create an account³⁵⁶ if you haven’t already. Once logged in,
create a Nix repl.

³⁵³https://en.wikipedia.org/wiki/RSS
³⁵⁴https://en.wikipedia.org/wiki/Atom_(Web_standard)
³⁵⁵https://replit.com
³⁵⁶https://replit.com/signup

https://en.wikipedia.org/wiki/RSS
https://en.wikipedia.org/wiki/Atom_(Web_standard)
https://replit.com/
https://replit.com/signup
https://en.wikipedia.org/wiki/RSS
https://en.wikipedia.org/wiki/Atom_(Web_standard)
https://replit.com/
https://replit.com/signup

Build an email news digest app with Nix, Python and Celery 414

Create a nix repl

Installing dependencies

We’ll start by using Nix to install the packages and libraries we’ll need to build our application. These
are:

1. Python 3.9, the programming language we’ll write our application in.
2. Flask, Python’s most popular micro web framework, which we’ll use to power our web

application.
3. MongoDB, the NoSQL database we’ll use to store persistent data for our application.
4. PyMongo, a library for working with MongoDB in Python.
5. Celery, a Python task queuing system. We’ll use this to send regular emails to users.
6. Redis, a data store and message broker used by Celery to track tasks.
7. Python’s Redis library.
8. Python’s Requests library, which we’ll use to interact with an external API to send emails.
9. Python’s feedparser library, which we’ll use to parse news feeds.
10. Python’s dateutil library, which we’ll use to parse timestamps in news feeds.

To install these dependencies, open replit.nix and edit it to include the following:

Build an email news digest app with Nix, Python and Celery 415

1 { pkgs }: {

2 deps = [

3 pkgs.cowsay

4 pkgs.python39

5 pkgs.python39Packages.flask

6 pkgs.mongodb

7 pkgs.python39Packages.pymongo

8 pkgs.python39Packages.celery

9 pkgs.redis

10 pkgs.python39Packages.redis

11 pkgs.python39Packages.requests

12 pkgs.python39Packages.feedparser

13 pkgs.python39Packages.dateutil

14];

15 }

Run your repl now to install all the packages. Once the Nix environment is finished loading, you
should see a welcome message from cowsay.

Now edit your repl’s .replit file to run a script called start.sh:

1 run = "sh start.sh"

Next we need to create start.sh in the repl’s files tab:

Build an email news digest app with Nix, Python and Celery 416

Create Start.sh

And add the following bash code to start.sh:

1 #!/bin/sh

2

3 # Clean up

4 pkill mongo

5 pkill redis

6 pkill python

7 pkill start.sh

8 rm data/mongod.lock

9 mongod --dbpath data --repair

10

11 # Run Mongo with local paths

12 mongod --fork --bind_ip="127.0.0.1" --dbpath=./data --logpath=./log/mongod.log

Build an email news digest app with Nix, Python and Celery 417

13

14 # Run redis

15 redis-server --daemonize yes --bind 127.0.0.1

The first section of this script will kill all the running processes so they can be restarted. While it
may not be strictly necessary to stop and restart MongoDB or Redis every time you run your repl,
doing so means we can reconfigure them should we need to, and prevents us from having to check
whether they’re stopped or started, independent of our other code.

The second section of the script starts MongoDB with the following configuration options:

• --fork: This runs MongoDB in a background process, allowing the script to continue executing
without shutting it down.

• --bind_ip="127.0.0.1": Listen on the local loopback address only, preventing external access
to our database.

• --dbpath=./data and --logpath=./log/mongod.log: Use local directories for storage. This is
important for getting programs to work in Nix repls, as we discussed in our previous tutorial
on building with Nix³⁵⁷.

The third section starts Redis. We use the --bind flag to listen on the local loopback address only,
similar to how we used it for MongoDB, and --daemonize yes runs it as a background process
(similar to MongoDB’s --fork).

Before we run our repl, we’ll need to create our MongoDB data and logging directories, data and
log. Create these directories now in your repl’s filepane.

³⁵⁷https://docs.replit.com/tutorials/30-build-with-nix

https://docs.replit.com/tutorials/30-build-with-nix
https://docs.replit.com/tutorials/30-build-with-nix
https://docs.replit.com/tutorials/30-build-with-nix

Build an email news digest app with Nix, Python and Celery 418

Create Directories

Once that’s done, you can run your repl, and it will start MongoDB and Redis. You can interact with
MongoDB by running mongo in your repl’s shell, and with Redis by running redis-cli. If you’re
interested, you can find an introduction to these clients at the links below:

• Working with the mongo Shell³⁵⁸
• redis-cli, the Redis command line interface³⁵⁹

³⁵⁸https://docs.mongodb.com/v4.4/mongo/#working-with-the-mongo-shell
³⁵⁹https://redis.io/topics/rediscli

https://docs.mongodb.com/v4.4/mongo/#working-with-the-mongo-shell
https://redis.io/topics/rediscli
https://docs.mongodb.com/v4.4/mongo/#working-with-the-mongo-shell
https://redis.io/topics/rediscli

Build an email news digest app with Nix, Python and Celery 419

Running mongo and redis cli

These datastores will be empty for now.

Important note: Sometimes, when stopping and starting your repl, you may see the following error
message:

1 ERROR: child process failed, exited with error number 100

This means that MongoDB has failed to start. If you see this, restart your repl, and MongoDB should
start up successfully.

Scraping RSS and Atom feeds

We’re going to build the feed scraper first. If you’ve completed any of our previous web-scraping
tutorials, you might expect to do this by parsing raw XML with Beautiful Soup³⁶⁰. While this would
be possible, we would need to account for a large number of differences in feed formats and other
gotchas specific to parsing RSS and Atom feeds. Instead, we’ll use the feedparser³⁶¹ library, which
has already solved most of these problems.

Create a directory named lib, and inside that directory, a Python file named scraper.py. Add the
following code to it:

³⁶⁰https://beautiful-soup-4.readthedocs.io/en/latest/
³⁶¹https://pypi.org/project/feedparser/

https://beautiful-soup-4.readthedocs.io/en/latest/
https://pypi.org/project/feedparser/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://pypi.org/project/feedparser/

Build an email news digest app with Nix, Python and Celery 420

1 import feedparser, pytz, time

2 from datetime import datetime, timedelta

3 from dateutil import parser

4

5 def get_title(feed_url):

6 pass

7

8 def get_items(feed_url, since=timedelta(days=1)):

9 pass

Here we import the libraries we’ll need for web scraping, XML parsing, and time handling. We also
define two functions:

• get_title: This will return the name of the website, for a given feed track (e.g. “Hacker News”
for https://news.ycombinator.com/rss).

• get_items: This will return the feed’s items – depending on the feed, these can be articles,
videos, podcast episodes, or other content. The since parameter will allow us to only fetch
recent content, and we’ll use one day as the default cutoff.

Edit the get_title function with the following:

1 def get_title(feed_url):

2 feed = feedparser.parse(feed_url)

3

4 return feed["feed"]["title"]

Add the following line to the bottom of scraper.py to test it out:

1 print(get_title("https://news.ycombinator.com/rss"))

Instead of rewriting our start.sh script to run this Python file, we can just run python lib/scraper.py

in our repl’s shell tab, as shown below. If it’s working correctly, we should see “Hacker News” as
the script’s output.

Script Test

Build an email news digest app with Nix, Python and Celery 421

Now we need to write the second function. Add the following code to the get_items function
definition:

1 def get_items(feed_url, since=timedelta(days=1)):

2 feed = feedparser.parse(feed_url)

3

4 items = []

5 for entry in feed.entries:

6 title = entry.title

7 link = entry.link

8 if "published" in entry:

9 published = parser.parse(entry.published)

10 elif "pubDate" in entry:

11 published = parser.parse(entry.pubDate)

Here we extract each item’s title, link, and publishing timestamp. Atom feeds use the published

element and RSS feeds use the pubDate element, so we look for both. We use parser³⁶² to convert
the timestamp from a string to a datetime object. The parse function is able to convert a large
number of different formats, which saves us from writing a lot of extra code.

We need to evaluate the age of the content and package it in a dictionary so we can return it from
our function. Add the following code to the bottom of the get_items function:

1 # evaluating content age

2 if (since and published > (pytz.utc.localize(datetime.today()) - since)) or \

3 not since:

4 item = {

5 "title": title,

6 "link": link,

7 "published": published

8 }

9 items.append(item)

10

11 return items

We get the current time with datetime.today(), convert it to the UTC timezone, and then subtract
our since timedelta object. Because of the way we’ve constructed this if statement, if we pass in
since=None when calling get_items, we’ll get all feed items irrespective of their publish date.

Finally, we construct a dictionary of our item’s data and add it to the items list, which we return at
the bottom of the function, outside the for loop.

Add the following lines to the bottom of scraper.py and run the script in your repl’s shell again. We
use time.sleep³⁶³ to avoid being rate-limited for fetching the same file twice in quick succession.
³⁶²https://dateutil.readthedocs.io/en/stable/parser.html
³⁶³https://docs.python.org/3/library/time.html#time.sleep

https://dateutil.readthedocs.io/en/stable/parser.html
https://docs.python.org/3/library/time.html#time.sleep
https://dateutil.readthedocs.io/en/stable/parser.html
https://docs.python.org/3/library/time.html#time.sleep

Build an email news digest app with Nix, Python and Celery 422

1 time.sleep(1)

2 print(get_items("https://news.ycombinator.com/rss"))

You should see a large number of results in your terminal. Play around with values of since and see
what difference it makes.

Once you’re done, remove the print statements from the bottom of the file. We’ve now built our
feed scraper, which we’ll use as a library in our main application.

Setting up Mailgun

Now that we can retrieve content for our email digests, we need a way of sending emails. To avoid
having to set up our own email server, we’ll use the Mailgun³⁶⁴ API to actually send emails. Sign up
for a free account now, and verify your email and phone number.

Once your account is created and verified, you’ll need an API key and domain from Mailgun.

To find your domain, navigate to Sending→Domains. You should see a single domain name, start-
ingwith “sandbox”. Click on that and copy the full domain name (it looks like: sandboxlongstringoflettersandnumbers.mailgun.org).

Mailgun domain

click to open gif ³⁶⁵

To find your API key, navigate to Settings→API Keys. Click on the view icon next to Private API
key and copy the revealed string somewhere safe.

³⁶⁴https://www.mailgun.com/
³⁶⁵https://docs.replit.com/images/tutorials/31-news-digest-app/mailgun-domain.gif

https://www.mailgun.com/
https://docs.replit.com/images/tutorials/31-news-digest-app/mailgun-domain.gif
https://www.mailgun.com/
https://docs.replit.com/images/tutorials/31-news-digest-app/mailgun-domain.gif

Build an email news digest app with Nix, Python and Celery 423

Mailgun api key

Back in your repl, create two environment variables, MAILGUN_DOMAIN and MAILGUN_APIKEY, and
provide the strings you copied from Mailgun as values for each.

Build an email news digest app with Nix, Python and Celery 424

Add Environment Variables

Run your repl now to set these environment variables. Then create a file named lib/tasks.py, and
populate it with the code below.

Build an email news digest app with Nix, Python and Celery 425

1 import requests, os

2

3 # Mailgun config

4 MAILGUN_APIKEY = os.environ["MAILGUN_APIKEY"]

5 MAILGUN_DOMAIN = os.environ["MAILGUN_DOMAIN"]

6

7 def send_test_email(to_address):

8 res = requests.post(

9 f"https://api.mailgun.net/v3/{MAILGUN_DOMAIN}/messages",

10 auth=("api", MAILGUN_APIKEY),

11 data={"from": f"News Digest <digest@{MAILGUN_DOMAIN}>",

12 "to": [to_address],

13 "subject": "Testing Mailgun",

14 "text": "Hello world!"})

15

16 print(res)

17

18 send_test_email("YOUR-EMAIL-ADDRESS-HERE")

Here we use Python Requests to interact with the Mailgun API³⁶⁶. Note the inclusion of our domain
and API key.

To test that Mailgun is working, replace YOUR-EMAIL-ADDRESS-HERE with your email address, and
then run python lib/tasks.py in your repl’s shell. You should receive a test mail within a few
minutes, but as we’re using a free sandbox domain, it may end up in your spam folder.

Without further verification on Mailgun, we can only send up to 100 emails per hour, and a free
account limits us to 5,000 emails per month. Additionally, Mailgun’s sandbox domains can only be
used to send emails to specific, whitelisted addresses. The address you created your account with
will work, but if you want to send emails to other addresses, you’ll have to add them to the domain’s
authorized recipients, which can be done from the page you got the full domain name from. Keep
these limitations in mind as you build and test this application.

Recipients

After you’ve received your test email, you can delete or comment out the function call in the final
line of lib/tasks.py.

³⁶⁶https://documentation.mailgun.com/en/latest/api-sending.html

https://documentation.mailgun.com/en/latest/api-sending.html
https://documentation.mailgun.com/en/latest/api-sending.html

Build an email news digest app with Nix, Python and Celery 426

Interacting with MongoDB

As we will have two different components of our application interacting with our Mongo database
– our email-sending code in lib/tasks.py and the web application code we will put in main.py –
we’re going to put our database connection code in another file, which can be imported by both.
Create lib/db.py now and add the following code to it:

1 import pymongo

2

3 def connect_to_db():

4 client = pymongo.MongoClient()

5 return client.digest

We will call connect_to_db() whenever we need to interact with the database. Because of how
MongoDB works, a new database called “digest” will be created the first time we connect. Much
of the benefit MongoDB provides over traditional SQL databases is that you don’t have to define
schemas before storing data.

Mongo databases are made up of collections, which contain documents. You can think of the
collections as lists and the documents as dictionaries. When we read and write data to and from
MongoDB, we will be working with lists of dictionaries.

Creating the web application

Now that we’ve got a working webscraper, email sender and database interface, it’s time to start
building our web application.

Create a file named main.py in your repl’s filepane and add the following import code to it:

1 from flask import Flask, request, render_template, session, flash, redirect, url_for

2 from functools import wraps

3 import os, pymongo, time

4

5 import lib.scraper as scraper

6 import lib.tasks as tasks

7 from lib.db import connect_to_db

We’ve imported everything we’ll need from Flask and other Python modules, as well as our three
local files from lib: scraper.py, tasks.py and db.py. Next, add the following code to initialize the
application and connect to the database:

Build an email news digest app with Nix, Python and Celery 427

1 app = Flask(__name__)

2

3 app.config['SECRET_KEY'] = os.environ['SECRET_KEY']

4

5 db = connect_to_db()

Our secret key will be a long, random string, stored in an environment variable. You can generate
one in your repl’s Python console with the following two lines of code:

1 import random, string

2 ''.join(random.SystemRandom().choice(string.ascii_uppercase + string.digits) for _ i\

3 n range(20))

Random string

In your repl’s “Secrets” tab, add a new key named SECRET_KEY and enter the random string you just
generated as its value.

Build an email news digest app with Nix, Python and Celery 428

Repl secret key

Next, we will create the context helper function. This function will provide the current user’s data
from our database to our application frontend. Add the following code to the bottom of main.py:

1 def context():

2 email = session["email"] if "email" in session else None

3

4 cursor = db.subscriptions.find({ "email": email })

5 subscriptions = [subscription for subscription in cursor]

6

7 return {

8 "user_email": email,

9 "user_subscriptions": subscriptions

10 }

When we build our user login, we will store the current user’s email address in Flask’s session
object³⁶⁷, which corresponds to a cookie³⁶⁸ that will be cryptographically signed with the secret key
we defined above. Without this, users would be able to impersonate each other by changing their
cookie data.

We query our MongoDB database by calling db.<name of collection>.find()³⁶⁹. If we call find()
without any arguments, all items in our collection will be returned. If we call find() with an
argument, as we’ve done above, it will return results with keys and values that match our argument.
The find() method returns a Cursor³⁷⁰ object, which we can extract the results of our query from.

³⁶⁷https://flask.palletsprojects.com/en/2.0.x/quickstart/#sessions
³⁶⁸https://en.wikipedia.org/wiki/HTTP_cookie
³⁶⁹https://docs.mongodb.com/manual/reference/method/db.collection.find/
³⁷⁰https://pymongo.readthedocs.io/en/stable/api/pymongo/cursor.html

https://flask.palletsprojects.com/en/2.0.x/quickstart/#sessions
https://flask.palletsprojects.com/en/2.0.x/quickstart/#sessions
https://en.wikipedia.org/wiki/HTTP_cookie
https://docs.mongodb.com/manual/reference/method/db.collection.find/
https://pymongo.readthedocs.io/en/stable/api/pymongo/cursor.html
https://flask.palletsprojects.com/en/2.0.x/quickstart/#sessions
https://en.wikipedia.org/wiki/HTTP_cookie
https://docs.mongodb.com/manual/reference/method/db.collection.find/
https://pymongo.readthedocs.io/en/stable/api/pymongo/cursor.html

Build an email news digest app with Nix, Python and Celery 429

Next, we need to create an authentication function decorator³⁷¹, which will restrict parts of our
application to logged-in users. Add the following code below the definition of the context function:

1 # Authentication decorator

2 def authenticated(f):

3 @wraps(f)

4 def decorated_function(*args, **kwargs):

5

6 if "email" not in session:

7 flash("Permission denied.", "warning")

8 return redirect(url_for("index"))

9

10 return f(*args, **kwargs)

11

12 return decorated_function

The code in the second function may look a bit strange if you haven’t written your own decorators
before. Here’s how it works: authenticated is the name of our decorator. You can think of decorators
as functions that take other functions as arguments. (The two code snippets below are for illustration
and not part of our program.) Therefore, if we write the following:

1 @authenticated

2 def authenticated_function():

3 return f"Hello logged-in user!"

4

5 authenticated_function()

It will be roughly equivalent to:

1 def authenticated_function():

2 return f"Hello logged-in user!"

3

4 authenticated(authenticated_function)

So whenever authenticated_function gets called, the code we’ve defined in decorated_function

will execute before anything we define in authenticated_function. This means we don’t have to
include the same authentication checking code in every piece of authenticated functionality. As per
the code, if a non-logged-in user attempts to access restricted functionality, our app will flash a
warning message and redirect them to the home page.

Next, we’ll add code to serve our home page and start our application:

³⁷¹https://realpython.com/primer-on-python-decorators/

https://realpython.com/primer-on-python-decorators/
https://realpython.com/primer-on-python-decorators/

Build an email news digest app with Nix, Python and Celery 430

1 # Routes

2 @app.route("/")

3 def index():

4 return render_template("index.html", **context())

5

6 app.run(host='0.0.0.0', port=8080)

This code will serve a Jinja³⁷² template, which we will create now in a separate file. In your repl’s
filepane, create a directory named templates, and inside that directory, a file named index.html.
Add the following code to index.html:

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>News Digest</title>

5 </head>

6 <body>

7 {% with messages = get_flashed_messages() %}

8 {% if messages %}

9 <ul class=flashes>

10 {% for message in messages %}

11 {{ message }}

12 {% endfor %}

13

14 {% endif %}

15 {% endwith %}

16

17 {% if user_email == None %}

18 <p>Please enter your email to sign up/log in:</p>

19 <form action="/login" method="post">

20 <input type="text" name="email">

21 <input type="submit" value="Login">

22 </form>

23 {% else %}

24 <p>Logged in as {{ user_email }}.</p>

25 <h1>Subscriptions</h1>

26

27 {% for subscription in user_subscriptions %}

28

29 {{ subscription.title }}

30 <form action="/unsubscribe" method="post" style="display: inline">

³⁷²https://jinja.palletsprojects.com/en/3.0.x/templates/

https://jinja.palletsprojects.com/en/3.0.x/templates/
https://jinja.palletsprojects.com/en/3.0.x/templates/

Build an email news digest app with Nix, Python and Celery 431

31 <input type="hidden" name="feed_url" value="{{subscription.url}}\

32 ">

33 <input type="submit" value="Unsubscribe">

34 </form>

35

36 {% endfor %}

37

38

39 <p>Add a new subscription:</p>

40 <form action="/subscribe" method="post">

41 <input type="text" name="feed_url">

42 <input type="submit" value="Subscribe">

43 </form>

44

45 <p>Send digest to your email now:</p>

46 <form action="/send-digest" method="post">

47 <input type="submit" value="Send digest">

48 </form>

49

50 <p>Choose a time to send your daily digest (must be UTC):</p>

51 <form action="/schedule-digest" method="post">

52 <input type="time" name="digest_time">

53 <input type="submit" value="Schedule digest">

54 </form>

55 {% endif %}

56

57 </body>

58 </html>

As this will be our application’s only page, it contains a lot of functionality. From top to bottom:

• We’ve included code to display flashed messages³⁷³ at the top of the page. This allows us to
show users the results of their actions without creating additional pages.

• If the current user is not logged in, we display a login form.
• If the current user is logged in, we display:
* A list of their current subscriptions, with an unsubscribe button next to each one.
* A form for adding new subscriptions.
* A button to send an email digest immediately.
* A form for sending email digests at a specific time each day.

To start our application when our repl runs, we must add an additional line to the bottom of
start.sh:
³⁷³https://flask.palletsprojects.com/en/2.0.x/patterns/flashing/

https://flask.palletsprojects.com/en/2.0.x/patterns/flashing/
https://flask.palletsprojects.com/en/2.0.x/patterns/flashing/

Build an email news digest app with Nix, Python and Celery 432

1 # Run Flask app

2 python main.py

Once that’s done, run your repl. You should see a login form.

Login Form

Adding user login

We will implement user login by sending a single-use login link to the email address provided in the
login form. This provides a number of benefits:

• We can use the code we’ve already written for sending emails.
• We don’t need to implement user registration separately.
• We can avoid worrying about user passwords.

To send login emails asynchronously, we’ll set up a Celery task.

In main.py, add the following code for the /login route below the definition of index:

1 # Login

2 @app.route("/login", methods=['POST'])

3 def login():

4 email = request.form['email']

5 tasks.send_login_email.delay(email)

6 flash("Check your email for a magic login link!")

7

8 return redirect(url_for("index"))

In this function, we get the user’s email, and pass it to a function we will define in lib/tasks.py.
As this function will be a Celery task³⁷⁴ rather than a conventional function, we must call it with
.delay(), a function in Celery’s task-calling API³⁷⁵.

Let’s implement this task now. Open lib/tasks.py and modify it as follows:
³⁷⁴https://docs.celeryproject.org/en/stable/userguide/tasks.html
³⁷⁵https://docs.celeryproject.org/en/stable/userguide/calling.html

https://docs.celeryproject.org/en/stable/userguide/tasks.html
https://docs.celeryproject.org/en/stable/userguide/calling.html
https://docs.celeryproject.org/en/stable/userguide/tasks.html
https://docs.celeryproject.org/en/stable/userguide/calling.html

Build an email news digest app with Nix, Python and Celery 433

1 import requests, os

2 import random, string # NEW IMPORTS

3 from celery import Celery # NEW IMPORT

4 from celery.schedules import crontab # NEW IMPORT

5 from datetime import datetime # NEW IMPORT

6

7 import lib.scraper as scraper # NEW IMPORT

8 from lib.db import connect_to_db # NEW IMPORT

9

10 # NEW LINE BELOW

11 REPL_URL = f"https://{os.environ['REPL_SLUG']}.{os.environ['REPL_OWNER']}.repl.co"

12

13 # NEW LINES BELOW

14 # Celery configuration

15 CELERY_BROKER_URL = "redis://127.0.0.1:6379/0"

16 CELERY_BACKEND_URL = "redis://127.0.0.1:6379/0"

17

18 celery = Celery("tasks", broker=CELERY_BROKER_URL, backed=CELERY_BACKEND_URL)

19

20 celery.conf.enable_utc = True

21

22 # Mailgun config

23 MAILGUN_APIKEY = os.environ["MAILGUN_APIKEY"]

24 MAILGUN_DOMAIN = os.environ["MAILGUN_DOMAIN"]

25

26 # NEW FUNCTION DECORATOR

27 @celery.task

28 def send_test_email(to_address):

29 res = requests.post(

30 f"https://api.mailgun.net/v3/{MAILGUN_DOMAIN}/messages",

31 auth=("api", MAILGUN_APIKEY),

32 data={"from": f"News Digest <digest@{MAILGUN_DOMAIN}>",

33 "to": [to_address],

34 "subject": "Testing Mailgun",

35 "text": "Hello world!"})

36

37 print(res)

38

39 # COMMENT OUT THE TESTING LINE

40 # send_test_email("YOUR-EMAIL-ADDRESS-HERE")

We’ve added the following:

Build an email news digest app with Nix, Python and Celery 434

• Additional imports for Celery and our other local files.
• A REPL_URL variable containing our repl’s URL, which we construct using environment
variables defined in every repl.

• Instantiation of a Celery object, configured to use Redis as a message broker and data
backend³⁷⁶, and the UTC timezone.

• A function decorator which converts our send_test_email function into a Celery task.

Next, we’ll define a function to generate unique IDs for our login links. Add the following code
below the send_test_email function definition:

1 def generate_login_id():

2 return ''.join(random.SystemRandom().choice(string.ascii_uppercase + string.digi\

3 ts) for _ in range(30))

This code is largely similar to the code we used to generate our secret key.

Next, we’ll create the task we called in main.py: send_login_email. Add the following code below
the definition of generate_login_id:

1 @celery.task

2 def send_login_email(to_address):

3

4 # Generate ID

5 login_id = generate_login_id()

6

7 # Set up email

8 login_url = f"{REPL_URL}/confirm-login/{login_id}"

9

10 text = f"""

11 Click this link to log in:

12

13 {login_url}

14 """

15

16 html = f"""

17 <p>Click this link to log in:</p>

18

19 <p>{login_url}</p>

20 """

21

22 # Send email

23 res = requests.post(

³⁷⁶https://docs.celeryproject.org/en/stable/getting-started/backends-and-brokers/index.html

https://docs.celeryproject.org/en/stable/getting-started/backends-and-brokers/index.html
https://docs.celeryproject.org/en/stable/getting-started/backends-and-brokers/index.html
https://docs.celeryproject.org/en/stable/getting-started/backends-and-brokers/index.html

Build an email news digest app with Nix, Python and Celery 435

24 f"https://api.mailgun.net/v3/{MAILGUN_DOMAIN}/messages",

25 auth=("api", MAILGUN_APIKEY),

26 data={"from": f"News Digest <digest@{MAILGUN_DOMAIN}>",

27 "to": [to_address],

28 "subject": "News Digest Login Link",

29 "text": text,

30 "html": html })

31

32 # Add to user_sessions collection if email sent successfully

33 if res.ok:

34 db = connect_to_db()

35 db.user_sessions.insert_one({"login_id": login_id, "email": to_address})

36

37 print(f"Sent login email to {to_address}")

38 else:

39 print("Failed to send login email.")

This code will generate a login ID, construct an email containing a /confirm-login link containing
that ID, and then send the email. If the email is sent successfully, it will add a document to our
MongoDB containing the email address and login ID.

Now we can return to main.py and create the /confirm-login route. Add the following code below
the login function definition:

1 @app.route("/confirm-login/<login_id>")

2 def confirm_login(login_id):

3 login = db.user_sessions.find_one({"login_id": login_id})

4

5 if login:

6 session["email"] = login["email"]

7 db.user_sessions.delete_one({"login_id": login_id}) # prevent reuse

8 else:

9 flash("Invalid or expired login link.")

10

11 return redirect(url_for("index"))

When a user clicks the login link in their email, they will be directed to this route. If a matching
login ID is found in the database, they will be logged in, and the login ID will be deleted so it can’t
be reused.

We’ve implemented all of the code we need for user login. The last thing we need to do to get it
working is to configure our repl to start a Celery worker³⁷⁷. When we invoke a task with .delay(),
this worker will execute the task.
³⁷⁷https://docs.celeryproject.org/en/stable/userguide/workers.html

https://docs.celeryproject.org/en/stable/userguide/workers.html
https://docs.celeryproject.org/en/stable/userguide/workers.html

Build an email news digest app with Nix, Python and Celery 436

In start.sh, add the following between the line that starts Redis and the line that starts our web
application:

1 # Run Celery worker

2 celery -A lib.tasks.celery worker -P processes --loglevel=info &

This will start a Celery worker, configured with the following flags:

• -A lib.tasks.celery: This tells Celery to run tasks associated with the celery object in
tasks.py.

• -P processes: This tells Celery to start new processes for individual tasks.
• --loglevel=info: This ensures we’ll have detailed Celery logs to help us debug problems.

We use & to run the worker in the background – this is a part of Bash’s syntax rather than a program-
specific backgrounding flag like we used for MongoDB and Redis.

Run your repl now, and you should see the worker start up with the rest of our application’s
components. Once the web application is started, open it in a new tab. Then try logging in with
your email address – remember to check your spam box for your login email.

Open in new window

If everything’s working correctly, you should see a page like this after clicking your login link:

Build an email news digest app with Nix, Python and Celery 437

Logged in view

Adding and removing subscriptions

Now that we can log in, let’s add the routes that handle subscribing to and unsubscribing from
news feeds. These routes will only be available to logged-in users, so we’ll use our authenticated
decorator on them. Add the following code below the confirm_login function definition in main.py:

1 # Subscriptions

2 @authenticated

3 @app.route("/subscribe", methods=['POST'])

4 def subscribe(): # new feed

5 feed_url = request.form["feed_url"]

6

7 # Test feed

8 try:

9 items = scraper.get_items(feed_url, None)

10 except Exception as e:

11 print(e)

12 flash("Invalid feed URL.")

13 return redirect(url_for("index"))

14

15 if items == []:

16 flash("Invalid feed URL")

Build an email news digest app with Nix, Python and Celery 438

17 return redirect(url_for("index"))

18

19 # Get feed title

20 time.sleep(1)

21 feed_title = scraper.get_title(feed_url)

This code will validate feed URLs by attempting to fetch their contents. Note that we are passing
None as the argument for since in scraper.get_items – this will fetch the whole feed, not just the
last day’s content. If it fails for any reason, or returns an empty list, an error message will be shown
to the user and the subscription will not be added.

Once we’re sure that the feed is valid, we sleep for one second and then fetch the title. The sleep is
necessary to prevent rate-limiting by some websites.

Now that we’ve validated the feed and have its title, we can add it to our MongoDB. Add the
following code to the bottom of the function:

1 # Add subscription to Mongodb

2 try:

3 db.subscriptions.insert_one({"email": session["email"], "url": feed_url, "ti\

4 tle": feed_title})

5 except pymongo.errors.DuplicateKeyError:

6 flash("You're already subscribed to that feed.")

7 return redirect(url_for("index"))

8 except Exception:

9 flash("An unknown error occured.")

10 return redirect(url_for("index"))

11

12 # Create unique index if it doesn't exist

13 db.subscriptions.create_index([("email", 1), ("url", 1)], unique=True)

14

15 flash("Feed added!")

16 return redirect(url_for("index"))

Here, we populate a new document with our subscription details and insert it into our “subscriptions”
collection. To prevent duplicate subscriptions, we use create_index³⁷⁸ to create a unique compound
index³⁷⁹ on the “email” and “url” fields. As create_index will only create an index that doesn’t
already exist, we can safely call it on every invocation of this function.

Next, we’ll create the code for unsubscribing from feeds. Add the following function definition below
the one above:

³⁷⁸https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection.create_index
³⁷⁹https://docs.mongodb.com/manual/core/index-unique/

https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection.create_index
https://docs.mongodb.com/manual/core/index-unique/
https://docs.mongodb.com/manual/core/index-unique/
https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection.create_index
https://docs.mongodb.com/manual/core/index-unique/

Build an email news digest app with Nix, Python and Celery 439

1 @authenticated

2 @app.route("/unsubscribe", methods=['POST'])

3 def unsubscribe(): # remove feed

4

5 feed_url = request.form["feed_url"]

6 deleted = db.subscriptions.delete_one({"email": session["email"], "url": feed_ur\

7 l})

8

9 flash("Unsubscribed!")

10 return redirect(url_for("index"))

Run your repl, and try subscribing and unsubscribing from some feeds. You can use the following
URLs to test:

• Hacker News feed: https://news.ycombinator.com/rss
• /r/replit on Reddit feed: https://www.reddit.com/r/replit.rss

Subscriptions

Sending digests

Once you’ve added some subscriptions, we can implement the /send-digest route. Add the
following code below the definition of unsubscribe in main.py:

Build an email news digest app with Nix, Python and Celery 440

1 # Digest

2 @authenticated

3 @app.route("/send-digest", methods=['POST'])

4 def send_digest():

5

6 tasks.send_digest_email.delay(session["email"])

7

8 flash("Digest email sent! Check your inbox.")

9 return redirect(url_for("index"))

Then, in tasks.py, add the following new Celery task:

1 @celery.task

2 def send_digest_email(to_address):

3

4 # Get subscriptions from Mongodb

5 db = connect_to_db()

6 cursor = db.subscriptions.find({"email": to_address})

7 subscriptions = [subscription for subscription in cursor]

8

9 # Scrape RSS feeds

10 items = {}

11 for subscription in subscriptions:

12 items[subscription["title"]] = scraper.get_items(subscription["url"])

First, we connect to the MongoDB and find all subscriptions created by the user we’re sending to.
We then construct a dictionary of scraped items for each feed URL.

Once that’s done, it’s time to create the email content. Add the following code to the bottom of
send_digest_email function:

1 # Build email digest

2 today_date = datetime.today().strftime("%d %B %Y")

3

4 html = f"<h1>Daily Digest for {today_date}</h1>"

5

6 for site_title, feed_items in items.items():

7 if not feed_items: # empty list

8 continue

9

10 section = f"<h2>{site_title}</h2>"

11 section += ""

12

Build an email news digest app with Nix, Python and Celery 441

13 for item in feed_items:

14 section += f"{item['title']}"

15

16 section += ""

17 html += section

In this code, we construct an HTML email with a heading and bullet list of linked items for each
feed. If any of our feeds have no items for the last day, we leave them out of the digest. We use
strftime³⁸⁰ to format today’s date in a human-readable manner.

After that, we can send the email. Add the following code to the bottom of the function:

1 # Send email

2 res = requests.post(

3 f"https://api.mailgun.net/v3/{MAILGUN_DOMAIN}/messages",

4 auth=("api", MAILGUN_APIKEY),

5 data={"from": f"News Digest <digest@{MAILGUN_DOMAIN}>",

6 "to": [to_address],

7 "subject": f"News Digest for {today_date}",

8 "text": html,

9 "html": html })

10

11 if res.ok:

12 print(f"Sent digest email to {to_address}")

13 else:

14 print("Failed to send digest email.")

Run your repl, and click on the Send digest button. You should receive an email digest with today’s
items from each of your subscriptions within a few minutes. Remember to check your spam!

³⁸⁰https://www.programiz.com/python-programming/datetime/strftime

https://www.programiz.com/python-programming/datetime/strftime
https://www.programiz.com/python-programming/datetime/strftime

Build an email news digest app with Nix, Python and Celery 442

Digest email

Scheduling digests

The last thing we need to implement is scheduled digests, to allow our application to send users a
digest every day at a specified time.

In main.py, add the following code below the send_digest function definition:

1 @authenticated

2 @app.route("/schedule-digest", methods=['POST'])

3 def schedule_digest():

4

5 # Get time from form

6 hour, minute = request.form["digest_time"].split(":")

7

8 tasks.schedule_digest(session["email"], int(hour), int(minute))

9

10 flash(f"Your digest will be sent daily at {hour}:{minute} UTC")

11 return redirect(url_for("index"))

This function retrieves the requested digest time from the user and calls tasks.schedule_digest.
As schedule_digest will be a regular function that schedules a task rather than a task itself, we can
call it directly.

Build an email news digest app with Nix, Python and Celery 443

Celery supports scheduling tasks through its beat functionality³⁸¹. This will require us to run an
additional Celery process, which will be a beat rather than a worker.

By default, Celery does not support dynamic addition and alteration of scheduled tasks, which we
need in order to allow users to set and change their digest schedules arbitrarily. So we’ll need a
custom scheduler³⁸² that supports this.

Many custom Celery scheduler packages are available on PyPI³⁸³, but as of October 2021, none of
these packages have been added to Nixpkgs. Therefore, we’ll need to create a custom derivation for
the scheduler we choose. Let’s do that in replit.nix now. Open the file, and add the let ... in

block below:

1 { pkgs }:

2 let

3 redisbeat = pkgs.python39Packages.buildPythonPackage rec {

4 pname = "redisbeat";

5 version = "1.2.4";

6

7 src = pkgs.python39Packages.fetchPypi {

8 inherit pname version;

9 sha256 = "0b800c6c20168780442b575d583d82d83d7e9326831ffe35f763289ebcd8b4\

10 f6";

11 };

12

13 propagatedBuildInputs = with pkgs.python39Packages; [

14 jsonpickle

15 celery

16 redis

17];

18

19 postPatch = ''

20 sed -i "s/jsonpickle==1.2/jsonpickle/" setup.py

21 '';

22 };

23 in

24 {

25 deps = [

26 pkgs.python39

27 pkgs.python39Packages.flask

28 pkgs.python39Packages.celery

29 pkgs.python39Packages.pymongo

³⁸¹https://docs.celeryproject.org/en/stable/userguide/periodic-tasks.html#using-custom-scheduler-classes
³⁸²https://docs.celeryproject.org/en/stable/userguide/periodic-tasks.html#using-custom-scheduler-classes
³⁸³https://pypi.org/search/?q=celery+beat&o=

https://docs.celeryproject.org/en/stable/userguide/periodic-tasks.html#using-custom-scheduler-classes
https://docs.celeryproject.org/en/stable/userguide/periodic-tasks.html#using-custom-scheduler-classes
https://pypi.org/search/?q=celery+beat&o=
https://docs.celeryproject.org/en/stable/userguide/periodic-tasks.html#using-custom-scheduler-classes
https://docs.celeryproject.org/en/stable/userguide/periodic-tasks.html#using-custom-scheduler-classes
https://pypi.org/search/?q=celery+beat&o=

Build an email news digest app with Nix, Python and Celery 444

30 pkgs.python39Packages.requests

31 pkgs.python39Packages.redis

32 pkgs.python39Packages.feedparser

33 pkgs.python39Packages.dateutil

34 pkgs.mongodb

35 pkgs.redis

36 redisbeat # <-- ALSO ADD THIS LINE

37];

38 }

We’ve chosen to use redisbeat³⁸⁴, as it is small, simple and uses Redis as a backend. We construct
a custom derivation for it using the buildPythonPackage function, to which we pass the following
information:

• The package’s name and version.
• src: Where to find the package’s source code (in this case, from PyPI, but we could also use
GitHub, or a generic URL).

• propagatedBuildInputs: The package’s dependencies (all of which are available fromNixpkgs).
• postPatch: Actions to take before installing the package. For this package, we remove the
version specification for dependency jsonpickle in setup.py. This will force redisbeat to
use the latest version of jsonpickle, which is available from Nixpkgs and, as a bonus, does not
contain this critical vulnerability³⁸⁵.

You can learn more about using Python with Nixpkgs in this section of the official documentation³⁸⁶.

To actually install redisbeat, we must also add it to our deps list. Once you’ve done that, run your
repl. Building custom Nix derivations like this one often takes some time, so you may have to wait
a while before your repl finishes loading the Nix environment.

While we wait, let’s import redisbeat in lib/tasks.py and create our schedule_digest function.
Add the following code to the bottom of lib/tasks.py:

³⁸⁴https://github.com/liuliqiang/redisbeat
³⁸⁵https://nvd.nist.gov/vuln/detail/CVE-2020-22083
³⁸⁶https://github.com/NixOS/nixpkgs/blob/master/doc/languages-frameworks/python.section.md

https://github.com/liuliqiang/redisbeat
https://nvd.nist.gov/vuln/detail/CVE-2020-22083
https://github.com/NixOS/nixpkgs/blob/master/doc/languages-frameworks/python.section.md
https://github.com/liuliqiang/redisbeat
https://nvd.nist.gov/vuln/detail/CVE-2020-22083
https://github.com/NixOS/nixpkgs/blob/master/doc/languages-frameworks/python.section.md

Build an email news digest app with Nix, Python and Celery 445

1 from redisbeat.scheduler import RedisScheduler

2

3 scheduler = RedisScheduler(app=celery)

4

5 def schedule_digest(email, hour, minute):

6

7 scheduler.add(**{

8 "name": "digest-" + email,

9 "task": "lib.tasks.send_digest_email",

10 "kwargs": {"to_address": email },

11 "schedule": crontab(minute=minute, hour=hour)

12 })

This code uses redisbeat’s RedisScheduler to schedule the execution of our send_digest_email
task. Note that we’ve used the task’s full path, with lib included: this is necessary when scheduling.

We’ve used Celery’s crontab³⁸⁷ schedule type, which is highly suited to managing tasks that run at
a certain time each day.

If a task with the same name already exists in the schedule, scheduler.addwill update it rather than
adding a new task. This means our users can change their digest time at will.

Now that our code is in place, we can add a new Celery beat process to start.sh. Add the following
line just after the line that starts the Celery worker:

1 celery -A lib.tasks.celery beat -S redisbeat.RedisScheduler --loglevel=debug &

Now run your repl. You can test this functionality out now by scheduling your digest about ten
minutes in the future. If you want to receive regular digests, you will need to enable Always-on³⁸⁸
in your repl. Also, remember that all times must be specified in the UTC timezone.

Where next?

We’ve built a useful multi-component application, but its functionality is fairly rudimentary. If you’d
like to keep working on this project, here are some ideas for next steps:

• Set up a custom domain with Mailgun to help keep your digest emails out of spam.
• Feed scraper optimization. Currently, we fetch the whole feed twice when adding a new
subscription and have to sleep to avoid rate-limiting. The scraper could be optimized to fetch
feed contents only once.

³⁸⁷https://docs.celeryproject.org/en/stable/userguide/periodic-tasks.html#crontab-schedules
³⁸⁸https://docs.replit.com/hosting/enabling-always-on

https://docs.celeryproject.org/en/stable/userguide/periodic-tasks.html#crontab-schedules
https://docs.replit.com/hosting/enabling-always-on
https://docs.celeryproject.org/en/stable/userguide/periodic-tasks.html#crontab-schedules
https://docs.replit.com/hosting/enabling-always-on

Build an email news digest app with Nix, Python and Celery 446

• Intelligent digest caching. If multiple users subscribe to the same feed and schedule their digests
for the same time, we will unnecessarily fetch the same content for each one.

• Multiple digests per user. Users could configure different digests with different contents at
different times.

• Allow users to schedule digests in their local timezones.
• Styling of both website and email content with CSS.
• A production WSGI and web server to improve the web application’s performance, like we
used in our previous tutorial on building with Nix³⁸⁹.

³⁸⁹https://docs.replit.com/tutorials/30-build-with-nix

https://docs.replit.com/tutorials/30-build-with-nix
https://docs.replit.com/tutorials/30-build-with-nix

Closing note
We have now come to the end of the series of tutorials. You have learnt the basics of the Repl.it IDE,
worked with more advanced features and gone through a number of practical projects. This doesn’t
mean the end of fun projects, for you should now be equipped to tackle your own projects, which
you can start from scratch or use the code from the tutorials as a basis.

	Table of Contents
	Welcome to Code with Repl.it
	Part 1: The basics of Repl.it
	Part 2: Advanced Repl.it use
	Part 3: Building your own projects

	Understanding the Repl.it IDE: a practical guide to building your first project with Repl.it
	Introduction: creating an account and starting a project
	Adding more files to your software project
	Sharing your application with others
	Sharing write-access: Multiplayer
	Make it your own
	Where next?

	Working with Files using Repl.it
	Working with files using Python
	Creating files using Python
	Building a weather logging system using Python and Repl.it
	Exporting our weather data files
	Make it your own
	Where next?

	Managing dependencies using Repl.it
	Understanding Repl.it's magic import tool and the universal package manager
	Installing packages through the GUI
	Building an NLP project using spaCy
	Make it your own
	Where next?

	Data science with Repl.it: Plots and graphs
	Installing Matplotlib and creating a basic line plot
	Making a scatter plot of US cities by state
	More advanced plotting with seaborn and pandas
	Saving plots to PNG files
	Make it your own
	Where next?

	Multiplayer: Pair programming with Repl.it
	Extending our data science article using pair programming: Getting help
	Make it your own
	Where next?

	Repl.it and GitHub: Using and contributing to open-source projects
	Importing a project from GitHub and running it on Repl.it
	Looking at the version control panel in Repl.it
	Forking the project to your own GitHub account
	Make it your own
	Where next?

	Building a game with PyGame and Repl.it
	Creating a PyGame repl
	Displaying the sprite using PyGame
	Making our tennis ball move with each frame
	Processing events: Detecting mouse clicks
	Making the ball bounce off the edges and move randomly
	Adding more balls
	Make it your own
	Where next?

	Staying safe: Keeping your passwords and other secrets secure
	Understanding .env files
	Refactoring our weather project to keep our API key secure
	Testing that the file is not copied into others' forks
	Using environment variables in our script
	Time travelling to find secrets
	Rotating credentials
	Make it your own
	Where next?

	An introduction to pytest and doing test-driven development with Repl.it
	Creating a project structure for pytest
	Defining examples for the name split function
	Writing the test cases for our names function
	Fixing our split_name function
	Using our function
	Make it your own
	Where next

	Productivity hacks
	Using the global command palette
	Using the code editing command palette
	Duplicating entire lines
	Deleting entire lines
	Inserting blank lines
	Indenting and dedenting lines
	Adding cursors
	Navigating to specific pieces of code
	Vim and Emacs key bindings
	Make it your own
	Where next?

	Using the Repl.it database
	Adding and reading data using the Repl.it database
	Building a basic phonebook application that can read and store data
	Make it your own
	Where next

	Repl.it Audio
	Understanding how audio works on Repl.it
	Getting a free audio file from the Free Music Archive
	Downloading audio files to our project
	Playing the audio file using Python
	Allowing the user to pause, change volume, or get information about the currently playing track
	Playing individual tones
	Make it your own
	Where next

	Beginner web scraping with Python and Repl.it
	Overview and requirements
	Webpages: beauty and the beast
	Downloading a web page with Python
	Using BeautifulSoup to extract all URLs
	Fetching all of the articles from the homepage
	Where next?

	Building news word clouds using Python and Repl.it
	Overview and requirements
	Web scraping
	Taking a look at RSS Feeds
	Setting up our online environment (Repl.it)
	Pulling data from our feed and extracting URLs
	Setting up a web application with Flask
	Downloading articles and extracting the text
	Returning HTML instead of plain text to the user
	Generating word clouds from text in Python
	Adding some finishing touches
	Where next?

	Building a Discord Bot with Python and Repl.it
	Overview and requirements
	Creating a Repl and installing our Discord dependencies
	Setting up authorization for our bot
	Keeping our bot alive
	Forking and extending our basic bot

	Building a Discord bot with Node.js and Repl.it
	Overview and requirements
	Creating a Repl and installing our Discord dependencies
	Setting up authorization for our bot
	Keeping our bot alive
	Forking and extending our basic bot

	Creating and hosting a basic web application with Django and Repl.it
	Setting up
	Creating a static home page
	Calling IPIFY from JavaScript
	Adding a new route and view, and passing data
	Calling a Django route using Ajax and jQuery
	Using ip-api.com for geolocation
	Getting weather data from OpenWeatherMap

	Building a CRM app with NodeJS, Repl.it, and MongoDB
	Overview and requirements
	Creating a Repl and connecting to our Database
	Making a user interface to insert customer data
	Updating and deleting database entries
	Putting it all together

	Introduction to Machine Learning with Python and Repl.it
	Overview and requirements
	Setting up
	Creating some mock data
	Understanding vectorization
	Understanding classification
	Building a manual classifier

	Quicksort tutorial: Python implementation with line by line explanation
	Overview and requirements
	The Partition algorithm
	The Quicksort function
	Testing our algorithm

	Hiding messages in images: steganography with Python and Repl.it
	A quick background on steganography
	Creating the project on Repl.it
	Encoding a text message as a binary string
	Adding an `end of message' delimeter
	Getting pixels from an image
	Encoding the image with the message
	Decoding messages from image files
	Adding a command line wrapper script
	Where next?

	Build a 2D Platform Game with PyGame and Repl.it
	Getting Started
	Making the Player Walk
	Making the Player Jump
	Refining the Game
	Where Next?
	Next Tutorial

	Create a static site generator with Python and Replit
	Building a proof of concept
	Blog generator
	Generic site generator
	Where to next?
	Next Tutorial

	Build a Personal Stock Market Dashboard
	Creating the Dashboard
	Accessing the Database and Recording Purchases
	Flushing the Database
	Serving Our Portfolio Data
	Fetching Current Prices
	Showing Our Portfolio
	Caching
	Where Next?
	Next Tutorial

	Building tic-tac-toe with WebSocket and Kaboom.js
	How do multiplayer games work?
	Creating a new project
	Setting up Socket.IO on the server
	Tracking the game state
	Accepting connections
	Handling new players
	Handling player actions
	Handling a rematch request
	Handling disconnects
	Checking for the end of the game
	Setting up Kaboom with Socket.IO
	Setting Kaboom parameters
	Adding the game board
	Adding player names and game status
	Connecting to the server
	Handling updated game state
	Handling player moves
	Next Steps
	Next Tutorial

	Build a team technical challenge website with replit.web
	Getting started
	Creating user roles
	Building forms
	Building back-end functionality
	Building the web application front-end
	Building the leaderboard
	Using the app
	Where next?
	Next Tutorial

	Build a paid content site with replit.web and Stripe
	Getting started
	Content upload and other admin functionality
	Content viewing and paywalls
	Creating the application frontend
	Integrating with Stripe
	Where next?
	Next Tutorial

	Build an email news digest app with Nix, Python and Celery
	Getting started
	Installing dependencies
	Scraping RSS and Atom feeds
	Setting up Mailgun
	Interacting with MongoDB
	Creating the web application
	Adding user login
	Adding and removing subscriptions
	Sending digests
	Scheduling digests
	Where next?

	Closing note

